High-Sensitivity Flexible MRI Coils via Printed Electronics
通过印刷电子技术实现高灵敏度柔性 MRI 线圈
基本信息
- 批准号:8512499
- 负责人:
- 金额:$ 23.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAnatomyAnkleAreaCaliberCeramicsCharacteristicsChildhoodClinicalComplexCopperCouplingCustomDepositionDevicesElectric CapacitanceElectronicsElementsFamilyFilmFocused Ultrasound TherapyFrequenciesGleanGoalsHospitalsHybridsImageInfantInkInterventionJointsKetonesKneeKnowledgeLeadLimb structureMagnetic Resonance ImagingMeasuresMechanicsMedical DeviceMetalsMethodsNeckNewborn InfantNoiseNylonsParticle SizePatientsPatternPerformancePolyethylene TerephthalatesPolymersPreparationPrintingProcessPropertyProtonsRadialResearchResistanceResolutionRoentgen RaysShapesShoulderSignal TransductionSolutionsSpeedStructureSurfaceSystemTechniquesTechnologyTemperatureTestingTextilesThickTimeTransistorsappendagebasecost effectivedesignexperienceflexibilityimaging modalityimprovedinnovationinsightlarge printpatient populationprogramsprototypepublic health relevanceresponsetransmission process
项目摘要
DESCRIPTION (provided by applicant): This proposal aims to bring the new field of printed large-area electronics to create flexible, conforming MRI coils printed on clothlike mesh substrates. These flexible coils will fit range of patient sizes and wrap around appendages. Printed arrays can be tailored into garments, improving hospital workflow and easing patient preparation. Thin printed coils, without discrete components, can also potentially be integrated into other systems such as MR-guided high intensity focused ultrasound, MR-PET and X-ray MR. Relevance: MRI receive coil arrays provide increased signal-to-noise-ratio (SNR) over standard single receivers. This excess SNR is often traded for either higher resolution or faster acquisitions. However, a poor fit negates the array's SNR gains. Most coil arrays today have a rigid or semi-rigid structure and are one-size- fits-all, whereas patients come in a variety of sizs and shapes. In fact, it is common to see coil elements offset from the anatomy to the point that the coils have poor fill-factor. This problem is exacerbated in pediatric imaging, and also around adult extremities such as ankles, knees, neck and shoulders. A conformal coil that fits well to convoluted body anatomy can lead to significant SNR gains - as high as 2x or 3x on the surface over standard rigid coils. In addition to SNR gain, ink-printed MRI coils and integrated tuning devices will reduce the number of solder/epoxy connections, improving long-term reliability of flexible coils. Finally, new materials will enable tailored integration of coils in other applicatins such as MR-guided interventions. Approach: Recently, the field of printed electronics has made breakthroughs in fabricating high-precision electronic components directly on a variety of flexible
substrates by using ink-based printing techniques. Our plan is to innovate on these processes and fabricate high-sensitivity flexible MRI coils. In Aim 1, we will develop a family of MRI-compatible electronic components for designing resonant receiver coils. Specifically, we will develop non-magnetic printed coil conductors, inductors, capacitors, diodes, and thin-film transistors using conductive, insulating and semiconducting inks. These components will be fabricated onto various mesh-type fabric substrates. We will test, characterize, and validate device performance, both electrically and mechanically. In Aim 2, we will fabricate stand-alone tuned surface coils for 1.5 T and 3 T proton resonance. Based on the results from Aim 1 and Aim 2 efforts, we will design a prototype infant-sized 4-channel coil array in Aim 3. The array wil be tested for mechanical durability, resonant coupling and image quality. Summary: When completed, the proposed research program will provide a unique set of electronic materials for fabricating high-sensitivity flexible coil arrays. As a result, cost-effective custom-designed hardware for improved imaging performance will be available to a broad range of patients. This research will impact emerging applications in wearable medical devices and provide opportunities for integrating thin MRI coils with other imaging modalities.
描述(由申请人提供):该提案旨在将印刷大面积电子器件的新领域引入到创建柔性的、符合要求的MRI线圈上,并将其印刷在布状网状基板上。这些灵活的线圈将适合病人的大小,并缠绕在附属物上。打印阵列可以定制成服装,改善医院的工作流程,减轻病人的准备工作。没有分立元件的薄印刷线圈也有可能集成到其他系统中,如磁共振引导的高强度聚焦超声、磁共振pet和x射线mr。相关性:MRI接收线圈阵列比标准的单个接收器提供更高的信噪比(SNR)。这种超额的信噪比通常被用来换取更高的分辨率或更快的收购。然而,较差的拟合会抵消阵列的信噪比增益。今天大多数线圈阵列都是刚性或半刚性结构,并且是一种尺寸适合所有人,而患者的尺寸和形状各异。事实上,这是常见的看到线圈元件偏移从解剖到点,线圈有不良的填充因素。这个问题在儿童成像中更为严重,在成人四肢,如脚踝、膝盖、脖子和肩膀周围也同样如此。适合弯曲身体解剖结构的保形线圈可以带来显着的信噪比增益-在表面上高达标准刚性线圈的2倍或3倍。除了SNR增益外,油墨印刷的MRI线圈和集成调谐装置将减少焊料/环氧树脂连接的数量,提高柔性线圈的长期可靠性。最后,新材料将使线圈在其他应用(如磁共振引导干预)中的定制集成成为可能。方法:近年来,印刷电子领域在直接在各种柔性材料上制造高精度电子元件方面取得了突破
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(2)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Claudia Arias其他文献
Ana Claudia Arias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ana Claudia Arias', 18)}}的其他基金
Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
- 批准号:
10729161 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
High-Sensitivity Flexible MRI Coils via Printed Electronics
通过印刷电子技术实现高灵敏度柔性 MRI 线圈
- 批准号:
8633036 - 财政年份:2013
- 资助金额:
$ 23.16万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 23.16万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 23.16万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
- 批准号:
BB/X013049/1 - 财政年份:2023
- 资助金额:
$ 23.16万 - 项目类别:
Research Grant














{{item.name}}会员




