High-Sensitivity Flexible MRI Coils via Printed Electronics

通过印刷电子技术实现高灵敏度柔性 MRI 线圈

基本信息

  • 批准号:
    8633036
  • 负责人:
  • 金额:
    $ 18.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This proposal aims to bring the new field of printed large-area electronics to create flexible, conforming MRI coils printed on clothlike mesh substrates. These flexible coils will fit range of patient sizes and wrap around appendages. Printed arrays can be tailored into garments, improving hospital workflow and easing patient preparation. Thin printed coils, without discrete components, can also potentially be integrated into other systems such as MR-guided high intensity focused ultrasound, MR-PET and X-ray MR. Relevance: MRI receive coil arrays provide increased signal-to-noise-ratio (SNR) over standard single receivers. This excess SNR is often traded for either higher resolution or faster acquisitions. However, a poor fit negates the array's SNR gains. Most coil arrays today have a rigid or semi-rigid structure and are one-size- fits-all, whereas patients come in a variety of sizs and shapes. In fact, it is common to see coil elements offset from the anatomy to the point that the coils have poor fill-factor. This problem is exacerbated in pediatric imaging, and also around adult extremities such as ankles, knees, neck and shoulders. A conformal coil that fits well to convoluted body anatomy can lead to significant SNR gains - as high as 2x or 3x on the surface over standard rigid coils. In addition to SNR gain, ink-printed MRI coils and integrated tuning devices will reduce the number of solder/epoxy connections, improving long-term reliability of flexible coils. Finally, new materials will enable tailored integration of coils in other applicatins such as MR-guided interventions. Approach: Recently, the field of printed electronics has made breakthroughs in fabricating high-precision electronic components directly on a variety of flexible substrates by using ink-based printing techniques. Our plan is to innovate on these processes and fabricate high-sensitivity flexible MRI coils. In Aim 1, we will develop a family of MRI-compatible electronic components for designing resonant receiver coils. Specifically, we will develop non-magnetic printed coil conductors, inductors, capacitors, diodes, and thin-film transistors using conductive, insulating and semiconducting inks. These components will be fabricated onto various mesh-type fabric substrates. We will test, characterize, and validate device performance, both electrically and mechanically. In Aim 2, we will fabricate stand-alone tuned surface coils for 1.5 T and 3 T proton resonance. Based on the results from Aim 1 and Aim 2 efforts, we will design a prototype infant-sized 4-channel coil array in Aim 3. The array wil be tested for mechanical durability, resonant coupling and image quality. Summary: When completed, the proposed research program will provide a unique set of electronic materials for fabricating high-sensitivity flexible coil arrays. As a result, cost-effective custom-designed hardware for improved imaging performance will be available to a broad range of patients. This research will impact emerging applications in wearable medical devices and provide opportunities for integrating thin MRI coils with other imaging modalities.
描述(由申请人提供):这项提案旨在将印刷大面积电子学的新领域引入,以创建印刷在布状网状基板上的灵活、符合要求的核磁共振线圈。这些柔性线圈可适应患者的各种尺寸,并可缠绕在附件上。打印阵列可以量身定做服装,改善医院工作流程,方便患者准备。没有分立组件的薄印刷线圈也可能集成到其他系统中,例如MR引导的高强度聚焦超声、MR-PET和X射线MR相关性:MRI接收线圈阵列提供比标准单一接收器更高的信噪比(SNR)。这种超高的SNR经常被用来换取更高的分辨率或更快的采集。然而,较差的匹配会抵消该阵列的SNR增益。今天大多数线圈阵列都是刚性或半刚性结构,并且是一刀切的,而患者则有各种大小和形状。事实上,经常会看到线圈元素偏离解剖结构,以至于线圈的填充系数很差。这一问题在儿科成像中加剧,在脚踝、膝盖、颈部和肩部等成人肢体周围也是如此。适合于复杂身体解剖的保形线圈可以带来显著的SNR增益-表面上的SNR比标准刚性线圈高达2倍或3倍。除了信噪比提高外,油墨印刷MRI线圈和集成调谐设备还将减少焊料/环氧连接的数量,提高柔性线圈的长期可靠性。最后,新材料将实现线圈在其他应用中的定制集成,例如磁共振引导的干预。方法:最近,印刷电子学领域在直接在各种柔性上制造高精度电子元件方面取得了突破性进展 通过使用基于油墨的打印技术来打印基材。我们的计划是在这些工艺上进行创新,制造出高灵敏度的柔性磁共振线圈。在目标1中,我们将开发一系列与MRI兼容的电子元件,用于设计谐振接收器线圈。具体地说,我们将开发使用导电、绝缘和半导体油墨的非磁性印刷线圈导体、电感、电容器、二极管和薄膜晶体管。这些部件将被制造在各种网状织物基板上。我们将从电气和机械两方面测试、表征和验证设备的性能。在目标2中,我们将制作用于1.5T和3T质子共振的独立调谐表面线圈。在目标1和目标2的基础上,我们将在目标3中设计一个婴儿尺寸的4通道线圈阵列原型,并对阵列的机械耐久性、谐振耦合和图像质量进行测试。摘要:该研究计划完成后,将为制造高灵敏度柔性线圈阵列提供一套独特的电子材料。因此,性价比高的定制硬件将为更多的患者提供更好的成像性能。这项研究将影响可穿戴医疗设备的新兴应用,并为将薄磁共振线圈与其他成像方式相结合提供机会。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Materials and methods for higher performance screen-printed flexible MRI receive coils.
  • DOI:
    10.1002/mrm.26399
  • 发表时间:
    2017-08
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Corea JR;Lechene PB;Lustig M;Arias AC
  • 通讯作者:
    Arias AC
Printed Receive Coils with High Acoustic Transparency for Magnetic Resonance Guided Focused Ultrasound.
  • DOI:
    10.1038/s41598-018-21687-1
  • 发表时间:
    2018-02-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Corea J;Ye P;Seo D;Butts-Pauly K;Arias AC;Lustig M
  • 通讯作者:
    Lustig M
Screen-printed flexible MRI receive coils.
  • DOI:
    10.1038/ncomms10839
  • 发表时间:
    2016-03-10
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Corea JR;Flynn AM;Lechêne B;Scott G;Reed GD;Shin PJ;Lustig M;Arias AC
  • 通讯作者:
    Arias AC
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ana Claudia Arias其他文献

Ana Claudia Arias的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ana Claudia Arias', 18)}}的其他基金

Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
  • 批准号:
    10729161
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
High-Sensitivity Flexible MRI Coils via Printed Electronics
通过印刷电子技术实现高灵敏度柔性 MRI 线圈
  • 批准号:
    8512499
  • 财政年份:
    2013
  • 资助金额:
    $ 18.7万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 18.7万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了