Multi-parametric anthropomorphic MRI Phantoms technology for reliable and reproducible structural and quantitative MRI
多参数拟人 MRI Phantoms 技术可实现可靠且可重复的结构和定量 MRI
基本信息
- 批准号:10729161
- 负责人:
- 金额:$ 61.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-08 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAccelerationAddressAirAnatomyBiologicalBrainChemicalsClinicClinicalCollaborationsColorCrosslinkerData ScienceDefectDevelopmentDiffusionEducational workshopEnsureEquipmentEvaluationExhibitsFatty acid glycerol estersFingerprintGelGeometryHeadHealthcareHeterogeneityHumanHydrogelsImageImaging PhantomsIndustrializationInternetLiquid substanceMachine LearningMagnetic Resonance ImagingMagnetismMapsMeasurementMeasuresMethodsModelingPaperPermeabilityPlasticsPredispositionPrintingProcessPropertyProtonsPublishingQuality ControlRecommendationRelaxationReproducibilityResolutionScanningShapesShoulderSignal TransductionSiteSliceSourceSpeedStandardizationStructureTechniquesTechnologyTestingThinnessTimeTissuesVariantViscosityWaterWorkbiomarker discoveryboneclinical translationdeep learningdensitydesigndigitaldigital twinfabricationhuman subjectimprovedmanufacturemanufacturing processmillimetermonomernovel strategiespersonalized diagnosticsprecision medicinereconstructionskillssoundthree dimensional structuretoolvalidation studies
项目摘要
Abstract
We aim to develop tools for ground-truth phantoms for quantitative and structural MRI (qMRI). qMRI aims to
acquire maps of physical or chemical variables that can be measured in physical units and compared between
tissue regions and among subjects. In contrast, most clinical MRI acquisitions are only qualitative, i.e. “weighted
images”, and not quantitative. While qMRI has the potential to improve precision diagnostics and medicine, it
has been traditionally hampered by significant barriers such as imaging speed, computational practicalities, and
reproducibility and repeatability of MR measurements. The variability between scanners and human subjects
and the lack of ground truth in biological tissues fundamentally challenge the development, testing and
standardization of qMRI techniques. The National Institute of Standards and Technology (NIST) hosted
workshops working towards standardizing qMRI. The resulting recommendation paper highlighted a list of
outstanding needs. The proposed project aims to address these unmet needs by developing materials,
technology, tools and processes for manufacturing quantitative anthropomorphic MRI phantoms. Current state-
of-the-art solutions for manufacturing MRI phantoms often use discrete compartments or geometrical shapes
filled with chemical solutions representing a single physical parameter. In contrast, our proposed novel approach
will enable fabrication of phantoms that truly mimic the contrast heterogeneity of tissue in 3D. These will include
proton density, T1, T2, T2* relaxation times, magnetic susceptibility, diffusion, fat fraction, air-tissue field-
inhomogeneity, relative conductivity, electric permittivity and magnetic permeability. If successful, this will be the
first time that such a comprehensive set of MRI parameters is accomplished in a tissue-mimicking phantom.
Based on our preliminary work on quantitative anatomy mimicking slice phantoms, we propose two approaches:
(a) Quantitative 3D stack of thin slices. This approach is inexpensive, easy to reproduce by labs with moderate
equipment and skills. (b) An advanced approach of boundaryless fully 3D phantoms that will be fabricated via
inkjet 3D printing of hydrogels and plastics and would enable true high resolution 3D structures with
heterogeneity that mimics human anatomy. In collaboration with leading industrial partners, we will validate and
disseminate our technology. Our proposal is motivated by a rising need for quantitative measurements in MRI
driven by precision medicine and the use of data science tools for biomarker discovery. With the rise of methods
such as fingerprinting, and accelerated reconstruction, quantitative MRI (qMRI) is closer to the clinics than ever.
The proposed quantitative MRI phantom will mimic the complexity of tissue structure and contrast mechanism
that are necessary to ensure the accuracy of qMRI. If successful, the project will greatly facilitate the development
and clinical translation of qMRI, making MRI accurate, precise, and quantitative – thus enabling precision
diagnostic and discoveries that will directly improve healthcare.
摘要
我们的目标是开发用于定量和结构MRI(qMRI)的地面真实幻影的工具。qMRI旨在
获取可以用物理单位测量的物理或化学变量的地图,并在
组织区域和受试者之间。相比之下,大多数临床MRI采集仅是定性的,即“加权”的。
图像,而不是量化。虽然qMRI有潜力改善精确诊断和医学,
传统上受到诸如成像速度、计算实用性等重大障碍的阻碍,
MR测量的再现性和可重复性。扫描仪和人类受试者之间的差异
以及生物组织中缺乏基本事实,从根本上挑战了生物组织的开发、测试和
qMRI技术的标准化。美国国家标准与技术研究院(NIST)
致力于标准化qMRI的研讨会。由此产生的建议文件着重列出了
突出的需求。拟议的项目旨在通过编写材料,
用于制造定量拟人MRI体模的技术、工具和过程。当前状态-
用于制造MRI体模的现有技术解决方案通常使用离散的隔室或几何形状
充满了代表单一物理参数的化学溶液。相比之下,我们提出的新方法
将使得能够制造真实地模拟3D中组织的对比度异质性的体模。这些将包括
质子密度、T1、T2、T2* 弛豫时间、磁化率、扩散、脂肪分数、空气组织场-
不均匀性、相对电导率、电容率和磁导率。如果成功,这将是
这是第一次在组织模拟体模中完成这样一组全面的MRI参数。
基于我们在定量解剖学模拟切片体模方面的初步工作,我们提出了两种方法:
(a)薄片的定量3D堆叠。这种方法成本低廉,易于在实验室中重现,
设备和技能。(b)一种先进的无边界全3D幻影方法,将通过
喷墨3D打印水凝胶和塑料,并将实现真正的高分辨率3D结构,
模仿人体解剖学的异质性。通过与领先的工业合作伙伴合作,我们将验证和
传播我们的技术我们的建议是出于对MRI中定量测量的日益增长的需求
由精准医学和使用数据科学工具进行生物标志物发现驱动。随着方法的兴起
例如指纹识别和加速重建,定量MRI(qMRI)比以往任何时候都更接近临床。
所提出的定量MRI体模将模拟组织结构和对比机制的复杂性
以确保qMRI的准确性。如果成功,该项目将大大促进发展
qMRI的临床翻译,使MRI准确,精确和定量-从而实现精确度
诊断和发现,将直接改善医疗保健。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ana Claudia Arias其他文献
Ana Claudia Arias的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ana Claudia Arias', 18)}}的其他基金
High-Sensitivity Flexible MRI Coils via Printed Electronics
通过印刷电子技术实现高灵敏度柔性 MRI 线圈
- 批准号:
8633036 - 财政年份:2013
- 资助金额:
$ 61.04万 - 项目类别:
High-Sensitivity Flexible MRI Coils via Printed Electronics
通过印刷电子技术实现高灵敏度柔性 MRI 线圈
- 批准号:
8512499 - 财政年份:2013
- 资助金额:
$ 61.04万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 61.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 61.04万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 61.04万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 61.04万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 61.04万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 61.04万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 61.04万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 61.04万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 61.04万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 61.04万 - 项目类别:
Standard Grant