Single Molecule Imaging of Guided Axonal Development using Plasmon Nanorulers

使用等离子纳米尺引导轴突发育的单分子成像

基本信息

  • 批准号:
    8440292
  • 负责人:
  • 金额:
    $ 18.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-03-15 至 2014-02-28
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Neurotropic growth factors such as nerve growth factor (NGF) and neutrophins stimulate proneuritic signals of neural cells (NCs) via ligand-induced dimerizations of neural specific membrane receptor- tyrosine kinases (nsmRTKs) and modulate several key processes in neural cells including axon specification and elongation. However, it is still unclear how these biomolecular regulators coordinate highly complex morphogenesis for the neural circuit network formation. To understand molecular mechanisms of axonal development with high spatio-temporal complexity, it is required to monitor neural cells in real-time at the single molecule level with multivariate analytical capability. Here, we propos an innovative approach to investigate molecular mechanisms of axonal development at the single molecule level using in situ surface plasmon dark field microscopy. Unlike conventional microscopy that only provides a static assessment of cell status, the proposed surface plasmon microscopy allows us to visualize single molecule events of the signaling molecules continuously over the axon generation period as well as morphogenetic development. With this new technique, specifically, I will challenge the following topics: 1. In situ monitoring of TrKA dimerization of individual nerual cells and its correlation with distinct morphogenesis (axon specification and elongation). 2. Focused neurite activation of a single cell and its communication with surrounding cells. 3. Test the feasibility of an artificial magnetic tweezer system for the guided axonal development.
描述(由申请人提供):亲神经生长因子(如神经生长因子(NGF)和嗜中性蛋白)通过配体诱导的神经特异性膜受体酪氨酸激酶(nsmRTK)二聚化刺激神经细胞(NC)的前神经信号,并调节神经细胞中的几个关键过程,包括轴突特化和伸长。 然而,目前还不清楚这些生物分子调节剂如何协调高度复杂的形态发生神经回路网络的形成。 为了理解具有高时空复杂性的轴突发育的分子机制,需要在具有多变量分析能力的单分子水平上实时监测神经细胞。 在这里,我们提出了一种创新的方法,在单分子水平上使用原位表面等离子体暗视野显微镜研究轴突发育的分子机制。 与传统的显微镜,只提供了一个静态的评估细胞状态,建议的表面等离子体显微镜允许我们可视化信号分子的单分子事件连续轴突生成期间以及形态发生的发展。 通过这种新技术,具体来说,我将挑战以下主题:1。 TrKA的原位监测 单个神经细胞的二聚化及其与不同形态发生(轴突特化和伸长)的相关性。 2. 聚焦单个细胞的神经突激活及其与周围细胞的通讯。 3. 测试人工磁镊系统用于引导轴突发育的可行性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Young-wook Jun其他文献

Young-wook Jun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Young-wook Jun', 18)}}的其他基金

Notch1 and APP signaling in cerebral microvascular dysfunction
Notch1和APP信号传导在脑微血管功能障碍中的作用
  • 批准号:
    10196086
  • 财政年份:
    2021
  • 资助金额:
    $ 18.21万
  • 项目类别:
Spatiotemporal interrogation of molecular mechanobiololgy at the cell-cell interface with nanotechnology tools
使用纳米技术工具对细胞-细胞界面处的分子力学生物学进行时空询问
  • 批准号:
    10359739
  • 财政年份:
    2020
  • 资助金额:
    $ 18.21万
  • 项目类别:
Spatiotemporal interrogation of molecular mechanobiololgy at the cell-cell interface with nanotechnology tools
使用纳米技术工具对细胞-细胞界面处的分子力学生物学进行时空询问
  • 批准号:
    10577895
  • 财政年份:
    2020
  • 资助金额:
    $ 18.21万
  • 项目类别:
Spatiotemporal interrogation of molecular mechanobiololgy at the cell-cell interface with nanotechnology tools
使用纳米技术工具对细胞-细胞界面处的分子力学生物学进行时空询问
  • 批准号:
    10799376
  • 财政年份:
    2020
  • 资助金额:
    $ 18.21万
  • 项目类别:
Nanomodules for interrogating chemical, spatial, and mechanical dynamics of cell surface receptors
用于研究细胞表面受体的化学、空间和机械动力学的纳米模块
  • 批准号:
    9427924
  • 财政年份:
    2017
  • 资助金额:
    $ 18.21万
  • 项目类别:
Nanomodules for interrogating chemical, spatial, and mechanical dynamics of cell surface receptors
用于研究细胞表面受体的化学、空间和机械动力学的纳米模块
  • 批准号:
    9751903
  • 财政年份:
    2017
  • 资助金额:
    $ 18.21万
  • 项目类别:
Spatiotemporal Control of Dynamic Notch Signaling with Subcellular Resolution
具有亚细胞分辨率的动态Notch信号传导的时空控制
  • 批准号:
    9122436
  • 财政年份:
    2014
  • 资助金额:
    $ 18.21万
  • 项目类别:
Spatial Mutation of Membrane Protein Assembly Dynamics Using Nano-Actuators
使用纳米致动器的膜蛋白组装动力学的空间突变
  • 批准号:
    8918731
  • 财政年份:
    2014
  • 资助金额:
    $ 18.21万
  • 项目类别:
Spatiotemporal Control of Dynamic Notch Signaling with Subcellular Resolution
具有亚细胞分辨率的动态Notch信号传导的时空控制
  • 批准号:
    8768214
  • 财政年份:
    2014
  • 资助金额:
    $ 18.21万
  • 项目类别:
Spatiotemporal Control of Dynamic Notch Signaling with Subcellular Resolution
具有亚细胞分辨率的动态Notch信号传导的时空控制
  • 批准号:
    8901248
  • 财政年份:
    2014
  • 资助金额:
    $ 18.21万
  • 项目类别:

相似海外基金

An atypical microtubule generation mechanism for neurons drives dendrite and axon development and regeneration
神经元的非典型微管生成机制驱动树突和轴突的发育和再生
  • 批准号:
    23K21316
  • 财政年份:
    2024
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Characterizing Wnt Signaling Pathways in Axon Guidance
轴突引导中 Wnt 信号通路的特征
  • 批准号:
    10815443
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
2023 NINDS Landis Mentorship Award - Administrative Supplement to NS121106 Control of Axon Initial Segment in Epilepsy
2023 年 NINDS 兰迪斯指导奖 - NS121106 癫痫轴突初始段控制的行政补充
  • 批准号:
    10896844
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
Does phosphorylation regulation of the axon initial segment cytoskeleton improve behavioral abnormalities in ADHD-like animal models?
轴突起始段细胞骨架的磷酸化调节是否可以改善 ADHD 样动物模型的行为异常?
  • 批准号:
    23KJ1485
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Loss-of-function variants of the axon death protein SARM1 and protection from human neurodegenerative disease
轴突死亡蛋白 SARM1 的功能丧失变体和对人类神经退行性疾病的保护
  • 批准号:
    2891744
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Studentship
Collaborative Research: Evolution of ligand-dependent Robo receptor activation mechanisms for axon guidance
合作研究:用于轴突引导的配体依赖性 Robo 受体激活机制的进化
  • 批准号:
    2247939
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Standard Grant
Understanding the degeneration of axon and nerve terminals in Alzheimer's disease and related dementia brain
了解阿尔茨海默病和相关痴呆大脑中轴突和神经末梢的变性
  • 批准号:
    10661457
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
Unlocking BIN1 function in oligodendrocytes and support of axon integrity
解锁少突胶质细胞中的 BIN1 功能并支持轴突完整性
  • 批准号:
    10901005
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
The role of RNA methylation in cytoskeleton regulation during axon development
RNA甲基化在轴突发育过程中细胞骨架调节中的作用
  • 批准号:
    22KF0399
  • 财政年份:
    2023
  • 资助金额:
    $ 18.21万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了