Spatiotemporal interrogation of molecular mechanobiololgy at the cell-cell interface with nanotechnology tools

使用纳米技术工具对细胞-细胞界面处的分子力学生物学进行时空询问

基本信息

项目摘要

Abstract Juxtacrine signaling mediates cell-cell communications via direct molecular interactions at the signaling interface, during development, synapse formation and remodeling, immune activities, and tissue formation. Despite increasing knowledge of these signaling events, little is known about how the juxtacrine receptors sense and regulate cell signaling in response to the dynamic changes of its surrounding cells. The challenge of interrogating spatiotemporal dynamics of juxtacrine cell-cell signaling stems from the fact that many juxtacrine receptors integrate chemical, spatial, and mechanical cues to differentially regulate cell signaling. To deconstruct and decode the working mechanisms of these receptors with high spatiotemporal complexity, new technology tools allowing manipulation of the individual cues with different modes of stimulation, while reporting cellular responses with high spatiotemporal precision. Toward this aim, we previously developed nanotechnology platforms including monovalent quantum dot (mQD) probes, mechanogenetics, nanoruler force microscopy (NRFM), and magnetically amplified protein-protein interaction (MAP-I) tools. mQDs report single molecule trajectories of the targeted receptors, providing its dynamic spatial and diffusion properties precisely. Mechanogenetics allows us to manipulate chemical, spatial, and mechanical properties of the targeted receptors, while monitoring cellular responses to the respective cues. NRFM enables us to investigate force-responsive structural changes of the target receptors, and hence provides important insights into the mechanism of mechanotransduction. MAP-I allows for ultrasensitive detection of protein-protein interactions through magnetic amplification, enabling identification of weak protein-protein interactions that have not been possible with any other technologies. By using these new technologies, here, we propose to investigate the interaction and signaling dynamics of Notch and Neuroligin, key signaling proteins in development and synaptic function, respectively. Ultimately, we aim to provide a platform technology for the systematic investigation of operating principles for a wide range of juxtacrine signaling, accelerating our understanding of cell-cell communication.
摘要 辅助性他克林信号通过信号转导的直接分子相互作用介导细胞间的通讯 在发育过程中,突触的形成和重塑、免疫活动和组织形成。 尽管对这些信号事件的了解越来越多,但对旁分泌受体如何 感知和调节细胞信号,以响应周围细胞的动态变化。面临的挑战 质疑旁分泌细胞-细胞信号的时空动力学源于这样一个事实:许多旁分泌 受体整合化学、空间和机械信号,以不同的方式调节细胞信号。至 解构和解码这些具有高时空复杂性的受体的工作机制,新的 技术工具,允许通过不同的刺激模式操纵单独的提示,而 以高时空精确度报告细胞响应。为了达到这个目标,我们以前开发了 纳米技术平台,包括单价量子点(MQD)探针、机械遗传学、纳米规则 力显微镜(NRFM)和磁放大蛋白质-蛋白质相互作用(MAP-I)工具。MQDS报告 靶向受体的单分子轨迹,提供其动态空间和扩散特性 正是如此。机械遗传学允许我们操纵化学、空间和机械特性 靶向受体,同时监测细胞对各个线索的反应。NRFM使我们能够调查 目标受体的力响应结构变化,从而提供了对 机械转导机制。MAP-I允许超灵敏地检测蛋白质-蛋白质相互作用 通过磁性放大,能够识别尚未被 任何其他技术都是可能的。通过使用这些新技术,我们在这里建议调查 发育和发育中的关键信号蛋白Notch和Neuroigin的相互作用和信号动力学 突触功能。最终,我们的目标是为系统提供一个平台技术 研究广泛的旁分泌信号的工作原理,促进我们对 细胞间的通讯。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Young-wook Jun其他文献

Young-wook Jun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Young-wook Jun', 18)}}的其他基金

Notch1 and APP signaling in cerebral microvascular dysfunction
Notch1和APP信号传导在脑微血管功能障碍中的作用
  • 批准号:
    10196086
  • 财政年份:
    2021
  • 资助金额:
    $ 25万
  • 项目类别:
Spatiotemporal interrogation of molecular mechanobiololgy at the cell-cell interface with nanotechnology tools
使用纳米技术工具对细胞-细胞界面处的分子力学生物学进行时空询问
  • 批准号:
    10359739
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
Spatiotemporal interrogation of molecular mechanobiololgy at the cell-cell interface with nanotechnology tools
使用纳米技术工具对细胞-细胞界面处的分子力学生物学进行时空询问
  • 批准号:
    10577895
  • 财政年份:
    2020
  • 资助金额:
    $ 25万
  • 项目类别:
Nanomodules for interrogating chemical, spatial, and mechanical dynamics of cell surface receptors
用于研究细胞表面受体的化学、空间和机械动力学的纳米模块
  • 批准号:
    9427924
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
Nanomodules for interrogating chemical, spatial, and mechanical dynamics of cell surface receptors
用于研究细胞表面受体的化学、空间和机械动力学的纳米模块
  • 批准号:
    9751903
  • 财政年份:
    2017
  • 资助金额:
    $ 25万
  • 项目类别:
Spatiotemporal Control of Dynamic Notch Signaling with Subcellular Resolution
具有亚细胞分辨率的动态Notch信号传导的时空控制
  • 批准号:
    9122436
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
Spatial Mutation of Membrane Protein Assembly Dynamics Using Nano-Actuators
使用纳米致动器的膜蛋白组装动力学的空间突变
  • 批准号:
    8918731
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
Spatiotemporal Control of Dynamic Notch Signaling with Subcellular Resolution
具有亚细胞分辨率的动态Notch信号传导的时空控制
  • 批准号:
    8768214
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
Spatiotemporal Control of Dynamic Notch Signaling with Subcellular Resolution
具有亚细胞分辨率的动态Notch信号传导的时空控制
  • 批准号:
    8901248
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:
Spatiotemporal Control of Dynamic Notch Signaling with Subcellular Resolution
具有亚细胞分辨率的动态Notch信号传导的时空控制
  • 批准号:
    9314590
  • 财政年份:
    2014
  • 资助金额:
    $ 25万
  • 项目类别:

相似海外基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X007669/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
Nanoscopic elucidation of dynamic behavior of RNA viral nucleocapsid proteins using high-speed atomic force microscopy (HS-AFM)
使用高速原子力显微镜 (HS-AFM) 纳米级阐明 RNA 病毒核衣壳蛋白的动态行为
  • 批准号:
    24K18449
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unravelling dengue virus structural dynamics and conformational changes using high-speed atomic force microscopy
使用高速原子力显微镜揭示登革热病毒结构动力学和构象变化
  • 批准号:
    24K18450
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
State-of-the-art atomic force microscopy facilities for South Australia
南澳大利亚最先进的原子力显微镜设施
  • 批准号:
    LE240100129
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Atomic scale reactivity of small islands of a bimetallic alloy on ceria to small molecules investigated by ultrahigh resolution atomic force microscopy
通过超高分辨率原子力显微镜研究二氧化铈上双金属合金小岛对小分子的原子尺度反应性
  • 批准号:
    24K01350
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25万
  • 项目类别:
    Research Grant
A New Nano Tip Fabrication Technique for Atomic Force Microscopy
原子力显微镜的新型纳米尖端制造技术
  • 批准号:
    DP230100637
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Discovery Projects
Magnetic imaging by the locally induced anomalous Nernst effect using atomic force microscopy
使用原子力显微镜通过局部诱发的异常能斯特效应进行磁成像
  • 批准号:
    23K04579
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Characterization of super adhesive aerosols on the basis of individual particle analysis using atomic force microscopy
基于原子力显微镜单个颗粒分析的超粘性气溶胶表征
  • 批准号:
    22KJ1464
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Using atomic force microscopy to explore the processes and re-organisations that occur during bacterial growth and division and how these are influenc
使用原子力显微镜探索细菌生长和分裂过程中发生的过程和重组以及它们如何影响细菌
  • 批准号:
    2887441
  • 财政年份:
    2023
  • 资助金额:
    $ 25万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了