Enhanced Gene Identification in Complex Traits Using Kernel Machines
使用内核机器增强复杂性状的基因识别
基本信息
- 批准号:8598704
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-04 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalChromosome MappingChromosomesComplexComputer softwareDNA ResequencingDataData SetDiseaseEnvironmental Risk FactorEpilepsyExhibitsFamilyGene ExpressionGenesGeneticGenomeGenomicsGoalsHealthHumanHuman GenomeIndividualJointsLinkLinkage DisequilibriumLiteratureMachine LearningMapsMedicalMethodsMethylationModelingNatureNon-Insulin-Dependent Diabetes MellitusNuclear FamilyNucleotidesOther GeneticsPatternPerformancePlayPost-Traumatic Stress DisordersProceduresPublic HealthResearch DesignResearch PersonnelRiskRoleScientific Advances and AccomplishmentsSex BiasSimulateSourceStatistical MethodsStudy modelsTechnologyTestingVariantWorkX ChromosomeX InactivationX inherited traitabstractingbasecase controldesignflexibilitygene interactiongenetic analysisgenetic pedigreegenetic variantgenome wide association studyhuman diseaseimprovedinterestnext generation sequencingnovelopen sourcepopulation basedsexstemsuccesstooltraituser friendly software
项目摘要
DESCRIPTION (provided by applicant):
Project Summary/Abstract Genome-wide association studies (GWAS) have mapped thousands of common trait-influencing variants yet the overwhelming majority of trait loci have yet to be discovered. The goal of this proposal is to develop and apply statistical approaches that move beyond the standard GWAS paradigm to map additional trait-influencing variation within the human genome. Most of our proposed tools are based on a flexible high-dimensional framework called kernel machine regression, which we have had past success employing for powerful gene mapping of complex traits in GWAS and next-generation sequencing (NGS) studies. We believe the inherent flexibility of the kernel framework makes it ideal for exploring new paradigms in gene mapping of complex human traits. Aim 1 proposes novel kernel methods for integrated analysis of both single-nucleotide variation data (derived from GWAS and/or NGS) and genomic data (such as gene-expression and methylation patterns) that we believe will provide improved power for trait mapping. Aim 2 proposes novel kernel methods for large scale gene-gene interaction analysis across the genome, as well as a computational approach that enables efficient adjustment for multiple testing when applying such exhaustive testing procedures. Aim 3 establishes novel kernel methods for association mapping of SNVs on the X chromosome. The flexible nature of kernel machines makes it ideal for modeling potential sex-specific effects on this chromosome and the methods further can accommodate random X inactivation. Aim 4 proposes novel kernel approach for robust analysis of rare trait-influencing variation within families; such family-based designs are generally not considered in current rare-variant procedures. We will evaluate these methods on large-scale datasets that we are actively involved in and will implement the methods in user-friendly software for public distribution (Aim 5).
描述(由申请人提供):
全基因组关联研究(GWAS)已经绘制了数千个常见的性状影响变异,但绝大多数性状位点尚未被发现。该提案的目标是开发和应用超越标准GWAS范式的统计方法,以绘制人类基因组内其他影响性状的变异。我们提出的大多数工具都是基于一个灵活的高维框架,称为内核机器回归,我们已经成功地在GWAS和下一代测序(NGS)研究中成功地应用于复杂性状的强大基因定位。我们相信内核框架固有的灵活性使其成为探索复杂人类特征基因定位新范式的理想选择。目的1提出了新的内核方法,用于整合分析单核苷酸变异数据(来自GWAS和/或NGS)和基因组数据(如基因表达和甲基化模式),我们相信这将为性状定位提供更好的能力。目的2提出了新的核方法,大规模的基因-基因相互作用的分析,在整个基因组,以及一个计算方法,使有效的调整多个测试时,应用这种详尽的测试程序。目的3建立新的核方法用于X染色体上SNV的关联定位。内核机器的灵活性使其成为对该染色体的潜在性别特异性效应建模的理想方法,并且该方法还可以适应随机X失活。目的4提出了一种新的核方法,用于家族内罕见性状影响变异的稳健分析;这种基于家族的设计在当前的罕见变异程序中通常不被考虑。我们将在我们积极参与的大规模数据集上评估这些方法,并将在用户友好的软件中实现这些方法以供公开分发(目标5)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL PHILIP EPSTEIN其他文献
MICHAEL PHILIP EPSTEIN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL PHILIP EPSTEIN', 18)}}的其他基金
The schizophrenia-associated 3q29 deletion: genetic architecture of behavioral phenotypes
精神分裂症相关的 3q29 缺失:行为表型的遗传结构
- 批准号:
10579244 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
The schizophrenia-associated 3q29 deletion: genetic architecture of behavioral phenotypes
精神分裂症相关的 3q29 缺失:行为表型的遗传结构
- 批准号:
10382014 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Enhanced Gene Identification in Complex Traits Using Kernel Machines
使用内核机器增强复杂性状的基因识别
- 批准号:
8894057 - 财政年份:2013
- 资助金额:
$ 35万 - 项目类别:
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant