Identifying novel anti-infectives by high through-put screening in whole animals

通过对整体动物进行高通量筛选来鉴定新型抗感染药物

基本信息

  • 批准号:
    8312372
  • 负责人:
  • 金额:
    $ 103.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-28 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Continuously emerging new and hard-to-treat microbes, and the growing incidence of multi-drug resistant infections pose formidable challenges to human health. Innovative approaches are urgently needed to speed up the discovery of new anti-infectives. Our aim is to achieve a paradigm shift in antimicrobial drug discovery by finding next generation anti-infectives that prevent disease by blocking pathogen adaptation to host physiology. To this end we propose using whole live animals for high throughput screening of small molecules. We have developed infection models in the nematode Caenorhabditis elegans that can be used to identify drugs that cure otherwise lethal infections. High throughput screening of nematodes in 384-well plates is followed by secondary screening in a more highly evolved model host, the fruit fly Drosophila melanogaster, increasing the likelihood of isolating drugs that will work in humans. Our approach is applicable to many different classes of microorganisms, including bacteria, viruses, fungi and parasites. It has several advantages over traditional drug discovery: (i) In addition to identifying conventional antibiotics, it will uncover entirely new classes of anti-infectives that only exhibit in vivo activity. Examples are "virulence blockers" and "immune escape blockers". (ii) Our approach is unbiased and requires no prior knowledge of potential drug targets or pathways. (iii) It bypasses the current bottleneck of toxicity/efficacy testing by automatically eliminating toxic compounds (because they would kill the nematodes), yielding quality hits with in vivo activity. (iv) It will identify compounds that prevent or mitigate microbial resistance development, or can be combined with antibiotic therapy, thereby increasing antibiotic efficacy. We predict that our approach can identify compounds that inhibit diverse aspects of virulence: (i) adhesion and colonization, (ii) epithelial barrier disruption, (iii) deep tissue invasion, (iv) biofilm formation, (v) avoidance of immune recognition, and (vi) modulation of immune signaling. Some of the molecular mechanisms underlying these processes are conserved across bacterial species. To establish proof-of-principle, we seek funding for discovering new anti-infectives against Pseudomonas aeruginosa, one of several gram-negative bacteria that have recently emerged in a multi-drug resistant form for which efficient antibiotics are either limited or not available. We plan to screen a large number of chemical compounds (250,000) to maximize the discovery of new classes of anti-infectives. Promising compounds will undergo characterization, efficacy testing in other gram-negative bacteria (Klebsiella, Acinetobacter, Enterobacter) and testing in mouse models of infection. For highly promising candidates we will attempt molecular target identification. PUBLIC HEALTH RELEVANCE: Microbes that cause disease are becoming resistant to antibiotics faster than we can find new ones, making many common infections untreatable and life threatening. The goal of our project is to find a way to identify a new generation of antibiotics. Rather than simply preventing bacteria from growing, these new sophisticated drugs will prevent disease by interfering with a microbe's ability to interact with the human body.
描述(由申请人提供):不断出现的新的和难以治疗的微生物,以及日益增长的多重耐药感染的发生率,对人类健康构成了巨大的挑战。迫切需要创新的方法来加速发现新的抗感染药物。我们的目标是通过发现下一代抗感染药物,通过阻断病原体对宿主生理学的适应来预防疾病,从而实现抗菌药物发现的范式转变。为此,我们建议使用完整的活动物进行小分子的高通量筛选。我们已经开发了线虫秀丽隐杆线虫的感染模型,可用于鉴定治疗其他致命感染的药物。在384孔板中对线虫进行高通量筛选,然后在更高度进化的模型宿主果蝇(Drosophila melanogaster)中进行二次筛选,从而增加了分离出对人类有效的药物的可能性。我们的方法适用于许多不同种类的微生物,包括细菌、病毒、真菌和寄生虫。与传统的药物发现相比,它有几个优势:(i)除了识别传统的抗生素外,它还将发现仅表现出体内活性的全新抗感染药物类别。例如“毒力阻断剂”和“免疫逃逸阻断剂”。(ii)我们的方法是公正的,不需要预先了解潜在的药物靶点或途径。(iii)它通过自动消除有毒化合物(因为它们会杀死线虫)绕过了当前毒性/功效测试的瓶颈,产生具有体内活性的高质量命中。(iv)它将确定预防或减轻微生物耐药性发展的化合物,或者可以与抗生素治疗相结合,从而提高抗生素疗效。我们预测,我们的方法可以鉴定抑制毒力的不同方面的化合物:(i)粘附和定殖,(ii)上皮屏障破坏,(iii)深部组织侵入,(iv)生物膜形成,(v)避免免疫识别,和(vi)调节免疫信号传导。这些过程背后的一些分子机制在细菌物种中是保守的。为了建立原理证明,我们寻求资金用于发现针对铜绿假单胞菌的新的抗感染药物,铜绿假单胞菌是最近出现的几种革兰氏阴性细菌之一,这种细菌具有多重耐药性,有效的抗生素要么有限,要么不可用。我们计划筛选大量化合物(25万种),以最大限度地发现新的抗感染药物。有前途的化合物将进行表征,在其他革兰氏阴性菌(克雷伯氏菌,不动杆菌,肠杆菌)和小鼠感染模型中的测试的有效性测试。对于非常有希望的候选者,我们将尝试分子靶点鉴定。 公共卫生关系:导致疾病的微生物对抗生素产生耐药性的速度比我们找到新的抗生素的速度要快,这使得许多常见的感染无法治疗并危及生命。我们项目的目标是找到一种方法来识别新一代抗生素。这些新的复杂药物将通过干扰微生物与人体相互作用的能力来预防疾病,而不是简单地阻止细菌生长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Frederick M Ausubel其他文献

Frederick M Ausubel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Frederick M Ausubel', 18)}}的其他基金

First-in-class small molecule therapeutics to enhance gut barrier function in inflammatory bowel disease
一流的小分子疗法可增强炎症性肠病的肠道屏障功能
  • 批准号:
    10251430
  • 财政年份:
    2021
  • 资助金额:
    $ 103.53万
  • 项目类别:
First-in-class small molecules that enhance lung barrier function during acute respiratory distress syndrome (ARDS) as potential therapeutics for COVID-19
一流的小分子,可增强急性呼吸窘迫综合征 (ARDS) 期间的肺屏障功能,作为 COVID-19 的潜在疗法
  • 批准号:
    10254996
  • 财政年份:
    2021
  • 资助金额:
    $ 103.53万
  • 项目类别:
Discovering Novel Therapeutics for Myotonic Dystrophy Type 1 (DM1)
发现 1 型强直性肌营养不良 (DM1) 的新疗法
  • 批准号:
    9409067
  • 财政年份:
    2017
  • 资助金额:
    $ 103.53万
  • 项目类别:
Identifying novel anti-infectives by high through-put screening in whole animals
通过对整体动物进行高通量筛选来鉴定新型抗感染药物
  • 批准号:
    7764005
  • 财政年份:
    2009
  • 资助金额:
    $ 103.53万
  • 项目类别:
Harvard-wide Program on Antibiotic Resistance
哈佛大学抗生素耐药性计划
  • 批准号:
    8531132
  • 财政年份:
    2009
  • 资助金额:
    $ 103.53万
  • 项目类别:
Identifying novel anti-infectives by high through-put screening in whole animals
通过对整体动物进行高通量筛选来鉴定新型抗感染药物
  • 批准号:
    8126254
  • 财政年份:
    2009
  • 资助金额:
    $ 103.53万
  • 项目类别:
Harvard-wide Program on Antibiotic Resistance
哈佛大学抗生素耐药性计划
  • 批准号:
    8716642
  • 财政年份:
    2009
  • 资助金额:
    $ 103.53万
  • 项目类别:
Identifying novel anti-infectives by high through-put screening in whole animals
通过对整体动物进行高通量筛选来鉴定新型抗感染药物
  • 批准号:
    7939581
  • 财政年份:
    2009
  • 资助金额:
    $ 103.53万
  • 项目类别:
Identifying novel anti-infectives by high through-put screening in whole animals
通过对整体动物进行高通量筛选来鉴定新型抗感染药物
  • 批准号:
    8520165
  • 财政年份:
    2009
  • 资助金额:
    $ 103.53万
  • 项目类别:
Genetic Analysis of the Plant Defense Response
植物防御反应的遗传分析
  • 批准号:
    7895275
  • 财政年份:
    2009
  • 资助金额:
    $ 103.53万
  • 项目类别:

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.53万
  • 项目类别:
    Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
  • 批准号:
    BB/Y001427/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.53万
  • 项目类别:
    Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 103.53万
  • 项目类别:
    Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
  • 批准号:
    10669829
  • 财政年份:
    2023
  • 资助金额:
    $ 103.53万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10587090
  • 财政年份:
    2023
  • 资助金额:
    $ 103.53万
  • 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
  • 批准号:
    10821599
  • 财政年份:
    2023
  • 资助金额:
    $ 103.53万
  • 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
  • 批准号:
    10841832
  • 财政年份:
    2023
  • 资助金额:
    $ 103.53万
  • 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
  • 批准号:
    10532480
  • 财政年份:
    2022
  • 资助金额:
    $ 103.53万
  • 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
  • 批准号:
    10741261
  • 财政年份:
    2022
  • 资助金额:
    $ 103.53万
  • 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
  • 批准号:
    10674894
  • 财政年份:
    2022
  • 资助金额:
    $ 103.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了