Identifying Drugs to Treat Age-Dependent Neurodegeneration
确定治疗年龄依赖性神经退行性疾病的药物
基本信息
- 批准号:8323217
- 负责人:
- 金额:$ 58.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2014-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdultAdverse effectsAffectAgeAgingAgreementAlzheimer&aposs DiseaseAutophagocytosisBehaviorBiological AssayBiological ModelsCell AgingChronic DiseaseCircadian RhythmsConsensusDefectDevelopmentDiseaseDrosophila genusEffectivenessEmployee StrikesExcisionExposure toEyeGene ExpressionGene Expression ProfileGene MutationGenesGeneticGoalsHealthHumanHydrogen PeroxideImmunosuppressionIndividualLifeLongevityLysosomesMaintenanceMemory impairmentMethodsMitochondriaModificationMolecularMolecular ProfilingMusMutationNerve DegenerationNervous system structureNeurodegenerative DisordersNeuronsNeurophysiology - biologic functionNuclearOxidative StressParkinson DiseasePathway interactionsPatternPharmaceutical PreparationsPhasePhenotypePhysiologyPlantsPlayPopulationProcessProteinsReactive Oxygen SpeciesRecyclingRegulationResearchResistanceRoleScreening procedureServicesSignal PathwaySirolimusSleepStem cellsTechniquesTestingTherapeuticTimeTissuesUbiquitinVisual system structureWorkYeastsage relatedagedcytotoxicdesigndosagedrug testingeffective therapyflygenetic analysisin vivoin vivo Modelinterestkinase inhibitormulticatalytic endopeptidase complexnervous system disorderneuroprotectionnormal agingnovelnovel therapeuticspolyglutaminepolyphenolprotective effectprotein aggregateprotein misfoldingprotein profilingrelating to nervous systemsenescence
项目摘要
DESCRIPTION (provided by applicant): Defining the molecular mechanism that leads to cellular aging and neural degeneration has proven to be difficult. Many types of damage are thought to contribute to senescence and neural degeneration and include mitochondrial and nuclear DNA mutations, protein misfolding, aggregate formation, reactive oxygen species (ROS), and stem cell senescence. However, a consensus has not yet developed as to which mechanism plays a causal role in aging. Indeed, each tissue may have a select set of processes, or "Achilles' heel" that further exacerbated cellular decline. In the nervous system there is an agreement that mitochondrial senescence, the accumulation of ROS-dependent damage and the formation of protein aggregates or inclusion containing ubiquitin are involved with the most human neurological disorders, such as Alzheimer's and Parkinson's disease. There is a growing understanding that the autophagy pathway is involved with maintaining the mature nervous system by facilitating the removal of cellular damage and protein aggregates. The pathway is highly conserved and we found that expression profiles of autophagy genes show a significant decrease in the aging Drosophila CNS. At the same time, markers of cellular damage and aggregates, such as insoluble ubiquitinated aggregates (IUP), show a dramatic increase. Genetic analysis also shows that mutations in key genes significantly shorten adult lifespans (35 to 60%) and cause progressive neural defects that share striking similarities to those seen with Alzheimer's and other neurodegenerative disorders. Of greater significance is our observation that enhancing autophagy in the aging nervous system suppresses the accumulation of cellular damage (IUP) and significantly extends adult life spans. This work shows that examining factors that promote healthy neuronal aging can be done using Drosophila as a model system. In this proposal we take advantage of the conserved regulation of autophagy to identify neural protective compounds that enhance the pathway, promote longevity and neural function. This project involves several validated and optimized assays proposed in our original Phase-I application that were designed to identify compounds that enhanced autophagy, suppressed aggregate formation and extend life spans. In Specific Aim 1 an additional assay, which assesses the ability of different treatments to suppress oxidative stress was included. Specific Aim 2 represents an expansion of our drug-testing platform to assess the effectiveness of different compounds to promote neuronal health and function by examining their effect on several adult behaviors that show an age-dependent decline. Specific Aim 3 takes advantage of the conserved regulation of autophgy and other key protective pathways to identify those neural protective compounds that alter gene expression profiles in the aging nervous system. The goal of this proposal is to better understand the role of clearance pathways on aging and to develop in vivo assays that identify drugs that could be used for the treatment of human neurological disorders.
描述(由申请人提供):确定导致细胞老化和神经变性的分子机制已被证明是困难的。许多类型的损伤被认为有助于衰老和神经退行性变,包括线粒体和核DNA突变、蛋白质错误折叠、聚集形成、活性氧(ROS)和干细胞衰老。然而,对于哪种机制在衰老中起因果作用,尚未达成共识。事实上,每个组织都可能有一组特定的过程,或“阿喀琉斯之踵”,会进一步加剧细胞衰退。在神经系统中,人们一致认为,线粒体衰老、ros依赖性损伤的积累以及含有泛素的蛋白质聚集体或包涵体的形成与大多数人类神经系统疾病(如阿尔茨海默病和帕金森病)有关。越来越多的人认识到,自噬途径通过促进细胞损伤和蛋白质聚集物的清除,参与维持成熟的神经系统。该通路高度保守,我们发现自噬基因的表达谱在衰老的果蝇中枢神经系统中显着下降。与此同时,细胞损伤和聚集体的标志物,如不溶性泛素化聚集体(IUP),显示出急剧增加。基因分析还表明,关键基因的突变显著缩短了成年人的寿命(35%至60%),并导致进行性神经缺陷,与阿尔茨海默氏症和其他神经退行性疾病有惊人的相似之处。更重要的是,我们观察到,增强衰老神经系统的自噬可以抑制细胞损伤(IUP)的积累,并显著延长成年人的寿命。这项工作表明,研究促进健康神经元衰老的因素可以用果蝇作为模型系统来完成。在本研究中,我们利用自噬的保守调控来鉴定神经保护化合物,这些化合物可以增强自噬通路,促进寿命和神经功能。该项目包括在我们最初的i期申请中提出的几种经过验证和优化的检测方法,旨在识别增强自噬、抑制聚集形成和延长寿命的化合物。在Specific Aim 1中,还包括了一项额外的测定,该测定评估了不同处理抑制氧化应激的能力。Specific Aim 2代表了我们药物测试平台的扩展,通过检查不同化合物对几种表现出年龄依赖性衰退的成人行为的影响,评估不同化合物促进神经元健康和功能的有效性。特异性Aim 3利用自噬和其他关键保护途径的保守调节来识别那些改变老化神经系统基因表达谱的神经保护化合物。该提案的目标是更好地了解清除途径在衰老中的作用,并开发体内试验,以确定可用于治疗人类神经系统疾病的药物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KIM D. FINLEY其他文献
KIM D. FINLEY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KIM D. FINLEY', 18)}}的其他基金
Neural Aging and A Toxicity Assessments, a Fly Pharmacology-Molecular AD Model
神经衰老和毒性评估,苍蝇药理学分子 AD 模型
- 批准号:
10263906 - 财政年份:2020
- 资助金额:
$ 58.96万 - 项目类别:
Age-dependent regulation of clearance and signaling pathways
清除率和信号通路的年龄依赖性调节
- 批准号:
8321498 - 财政年份:2011
- 资助金额:
$ 58.96万 - 项目类别:
Age-dependent regulation of clearance and signaling pathways
清除率和信号通路的年龄依赖性调节
- 批准号:
8680103 - 财政年份:2011
- 资助金额:
$ 58.96万 - 项目类别:
Age-dependent regulation of clearance and signaling pathways
清除率和信号通路的年龄依赖性调节
- 批准号:
8494506 - 财政年份:2011
- 资助金额:
$ 58.96万 - 项目类别:
Age-dependent regulation of clearance and signaling pathways
清除率和信号通路的年龄依赖性调节
- 批准号:
8088253 - 财政年份:2011
- 资助金额:
$ 58.96万 - 项目类别:
Identifying Drugs to Treat Age-Dependent Neurodegeneration
确定治疗年龄依赖性神经退行性疾病的药物
- 批准号:
7611510 - 财政年份:2009
- 资助金额:
$ 58.96万 - 项目类别:
Identifying Drugs to Treat Age-Dependent Neurodegeneration
确定治疗年龄依赖性神经退行性疾病的药物
- 批准号:
8058888 - 财政年份:2009
- 资助金额:
$ 58.96万 - 项目类别:
Genetic Analysis of Autophagy in the Drosophila Nervous System
果蝇神经系统自噬的遗传分析
- 批准号:
7676136 - 财政年份:2008
- 资助金额:
$ 58.96万 - 项目类别:
Genetic Analysis of Autophagy in the Drosophila Nervous System
果蝇神经系统自噬的遗传分析
- 批准号:
7387693 - 财政年份:2008
- 资助金额:
$ 58.96万 - 项目类别:
CASANOVA, A GENE CONTROLLING SEX-SPECIFIC BEHAVIOR
Casanova,一种控制性别特异性行为的基因
- 批准号:
2379554 - 财政年份:1997
- 资助金额:
$ 58.96万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 58.96万 - 项目类别:
Research Grant