Novel Mechanisms of NSAID-induced GI Toxicity

NSAID 引起胃肠道毒性的新机制

基本信息

  • 批准号:
    8232604
  • 负责人:
  • 金额:
    $ 33.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Nonsteroidal anti-inflammatory drugs (NSAIDs) are among the most widely used drugs worldwide for the relief of inflammation and pain. However, NSAIDs cause adverse gastrointestinal (GI) side-effects in a large proportion of people who use them, many of whom require hospitalization to recover. Traditionally, NSAID- induced GI toxicity was associated with the inhibition of cyclooxygenase (COX) enzymes, particularly COX-1. Recent evidence however, indicates that COX inhibition does not account for the full range of toxic effects observed in the GI tract. Additionally, the discovery of the adverse cardiovascular effects of COX-2 specific NSAIDs has demonstrated the importance of identifying mechanisms through which NSAIDs cause GI toxicity. Accordingly, we propose to investigate the molecular mechanisms underlying inhibition of restitution by NSAIDs, one of the negative effects that NSAIDs have on GI epithelia. GI epithelia form a barrier that separates the internal milieu from the harsh conditions of the lumen of the GI. Restitution is the cell proliferation-free process by which wounds or gaps in the epithelial barrier are repaired by the spreading and migration of neighboring cells into the wound. NSAIDs with ulcerogenic potential inhibit cell migration in intestinal epithelial cells. Our research group has shown that this inhibition is associated with a decrease in the expression and activity of calpain proteases and depolarization of membrane potential (Em). On the basis of these data, we hypothesize that NSAIDs impair intestinal epithelial cell migration and inhibit calpain activity through a signaling pathway that is highly sensitive to drug-induced changes in Em. Therefore, in Specific Aim 1 we will determine if NSAIDs impair de-adhesion of cell contacts by measuring the number and distribution of cellular adhesions as well as the expression and rate of turnover of specific adhesion components. In Specific Aim 2, we will determine if NSAIDs or Em depolarization modulate calpain activity through disruption of EGF-stimulated phosphorylation of calpains or disruption of PIP balance by measuring expression and activation of the EGF pathway, PIP levels, and calpain activity and localization to the membrane. In Specific Aim 3, we will extend our in vitro experiments by determining the effects of NSAIDs on cell migration, calpain and Kv channel expression, and calpain participation in membrane localized complexes in rats treated with NSAIDs. These innovative experiments have the potential to identify molecular mechanisms through which NSAIDs decrease calpain activity, in addition to determining the effects of reductions in calpain activity on cellular de-adhesion during migration both in vitro and in vivo. This project will provide basic information on wound healing processes in intestinal cells that are applicable to other tissues, document the effects of NSAIDs on these processes, and give insight into how NSAIDs may affect the healing process in other tissues. The research also has great potential for aiding in the development of new drugs in this class capable of ameliorating pain without the adverse side effects of current drugs. PUBLIC HEALTH RELEVANCE: The widespread use of nonsteroidal anti-inflammatory drugs (NSAIDs) for the alleviation of inflammation and pain poses a major medical risk to patients due to the common toxic effects these drugs have on the gastrointestinal tract. Our research is designed to elucidate novel mechanisms through which these toxic effects occur in order to eliminate the side effects associated with NSAID use and enhance the safety of future drugs of this class. This research may help reduce or eliminate the loss of billions of dollars per year due to medical complications resulting from NSAID-induced GI toxicity.
描述(由申请人提供):非甾体抗炎药(NSAID)是全球最广泛使用的缓解炎症和疼痛的药物之一。然而,非甾体抗炎药会对很大一部分使用它们的人造成不良的胃肠道(GI)副作用,其中许多人需要住院才能康复。传统上,NSAID诱导的GI毒性与环氧化酶(考克斯)酶,特别是考克斯-1的抑制有关.然而,最近的证据表明,考克斯抑制不能解释胃肠道中观察到的全部毒性作用。此外,考克斯-2特异性NSAID的不良心血管作用的发现证明了确定NSAID引起GI毒性的机制的重要性。因此,我们建议调查潜在的抑制恢复非甾体类抗炎药,非甾体类抗炎药对胃肠道上皮细胞的负面影响之一的分子机制。胃肠道上皮细胞形成了一个屏障,将胃肠道的内部环境与胃肠道内腔的恶劣条件隔开。修复是无细胞增殖的过程,通过该过程,通过邻近细胞向伤口中的扩散和迁移来修复上皮屏障中的伤口或间隙。具有致溃疡潜力的NSAID抑制肠上皮细胞中的细胞迁移。我们的研究小组已经表明,这种抑制与钙蛋白酶蛋白酶的表达和活性的降低以及膜电位(Em)的去极化有关。在这些数据的基础上,我们假设,NSAID损害肠上皮细胞迁移和抑制钙蛋白酶活性,通过一个信号通路,是高度敏感的药物诱导的Em的变化。因此,在特定目标1中,我们将通过测量细胞粘附的数量和分布以及特定粘附组分的表达和转换速率来确定NSAID是否损害细胞接触的去粘附。在具体目标2中,我们将通过测量EGF途径的表达和激活、PIP水平和钙蛋白酶活性以及膜定位来确定NSAID或Em去极化是否通过破坏EGF刺激的钙蛋白酶磷酸化或破坏PIP平衡来调节钙蛋白酶活性。在具体目标3中,我们将通过确定NSAID对细胞迁移、钙蛋白酶和Kv通道表达以及钙蛋白酶参与NSAID治疗大鼠膜定位复合物的影响来扩展我们的体外实验。这些创新的实验有可能确定的分子机制,通过NSAID降低钙蛋白酶活性,除了确定钙蛋白酶活性的减少对细胞的脱粘过程中在体外和体内迁移的影响。该项目将提供适用于其他组织的肠细胞伤口愈合过程的基本信息,记录NSAID对这些过程的影响,并深入了解NSAID如何影响其他组织的愈合过程。这项研究也有很大的潜力,有助于开发这类能够改善疼痛而没有现有药物的不良副作用的新药。 公共卫生关系:广泛使用非甾体类抗炎药(NSAID)缓解炎症和疼痛,由于这些药物对胃肠道的常见毒性作用,对患者构成重大医疗风险。我们的研究旨在阐明这些毒性作用发生的新机制,以消除与NSAID使用相关的副作用,并提高未来此类药物的安全性。这项研究可能有助于减少或消除每年因NSAID诱导的胃肠道毒性引起的医疗并发症而造成的数十亿美元的损失。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inhibition of Kv channel expression by NSAIDs depolarizes membrane potential and inhibits cell migration by disrupting calpain signaling.
  • DOI:
    10.1016/j.bcp.2015.10.017
  • 发表时间:
    2015-12-15
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Silver K;Littlejohn A;Thomas L;Marsh E;Lillich JD
  • 通讯作者:
    Lillich JD
Suppression of calpain expression by NSAIDs is associated with inhibition of cell migration in rat duodenum.
  • DOI:
    10.1016/j.tox.2017.03.017
  • 发表时间:
    2017-05-15
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Silver K;Littlejohn A;Thomas L;Bawa B;Lillich JD
  • 通讯作者:
    Lillich JD
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JAMES D LILLICH其他文献

JAMES D LILLICH的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JAMES D LILLICH', 18)}}的其他基金

INTESTINAL EPITHELIAL WOUND HEALING: NSAIDS AND CALPAIN INHIBITION
肠上皮伤口愈合:NSAIDS 和钙蛋白酶抑制
  • 批准号:
    8167826
  • 财政年份:
    2010
  • 资助金额:
    $ 33.3万
  • 项目类别:
INTESTINAL EPITHELIAL WOUND HEALING: NSAIDS AND CALPAIN INHIBITION
肠上皮伤口愈合:NSAIDS 和钙蛋白酶抑制
  • 批准号:
    7959796
  • 财政年份:
    2009
  • 资助金额:
    $ 33.3万
  • 项目类别:
INTESTINAL EPITHELIAL WOUND HEALING: NSAIDS AND CALPAIN INHIBITION
肠上皮伤口愈合:NSAIDS 和钙蛋白酶抑制
  • 批准号:
    7720928
  • 财政年份:
    2008
  • 资助金额:
    $ 33.3万
  • 项目类别:
NSAIDS, POLYAMINE-DEPLETION & DEPOLARIZED MEMBRANE POTENTIAL
非甾体抗炎药、多胺消耗
  • 批准号:
    7610456
  • 财政年份:
    2007
  • 资助金额:
    $ 33.3万
  • 项目类别:
NSAIDS, POLYAMINE-DEPLETION & DEPOLARIZED MEMBRANE POTENTIAL
非甾体抗炎药、多胺消耗
  • 批准号:
    7381862
  • 财政年份:
    2006
  • 资助金额:
    $ 33.3万
  • 项目类别:
NSAIDS, POLYAMINE-DEPLETION & DEPOLARIZED MEMBRANE POTENTIAL
非甾体抗炎药、多胺消耗
  • 批准号:
    7171090
  • 财政年份:
    2005
  • 资助金额:
    $ 33.3万
  • 项目类别:
NSAIDS, POLYAMINE-DEPLETION & DEPOLARIZED MEMBRANE POTENTIAL
非甾体抗炎药、多胺消耗
  • 批准号:
    6981769
  • 财政年份:
    2004
  • 资助金额:
    $ 33.3万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 33.3万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了