Automated retinopathy of prematurity classification using machine learning

使用机器学习对早产儿视网膜病变进行自动分类

基本信息

  • 批准号:
    8723225
  • 负责人:
  • 金额:
    $ 19.89万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): The goal of this project is to develop a web-based, semi-automated system for identifying severe retinopathy of prematurity (ROP) with "plus disease," using an existing data set of retinal images collected from previous NIH-funded research studies. ROP is treatable if diagnosed early, yet continues to be a leading cause of childhood blindness throughout the world. Diagnosis and documentation of ophthalmoscopic findings in ROP are subjective and qualitative, and studies have found that there is often significant diagnostic variation, even when experts are shown the exact same clinical data. Computer-based image analysis and the application of machine learning techniques to feature extraction and image classification have potential to address many of these limitations. Recent advances in image processing have had led to sophisticated techniques for tracing vessel-like structures. Additionally, machine-learning techniques will enable us to leverage these existing annotated image databases to improve the performance of our algorithms for vessel segmentation and disease classification. Our overall hypothesis is that retinal vascular features may be quantified and used to assist clinicians in the diagnosis of ROP. These hypotheses will be tested using two Specific Aims: (1) Develop and evaluate semi-automated algorithms to segment retinal vessels and generate a set of retinal vessel-based features. (2) Develop computer-based decision support algorithms that best correlate with expert opinions. Overall, this project will build upon infrastructure developed from previous studies, create potential for improving the accuracy and consistency of clinical ROP diagnosis, provide a demonstration of computer-based decision support from image analysis during real-world medical care, and stimulate future research toward understanding the vascular features associated with severe ROP. This project will be performed by a multi-disciplinary team of investigators with expertise in ophthalmology, biomedical informatics, computer science, machine learning, and image processing.
描述(由申请人提供):本项目的目标是开发一个基于网络的半自动系统,用于识别具有“附加疾病”的严重早产儿视网膜病变(ROP),使用从以前NIH资助的研究中收集的视网膜图像的现有数据集。如果早期诊断,ROP是可以治疗的,但仍然是世界各地儿童失明的主要原因。ROP中检眼镜检查结果的诊断和记录是主观和定性的,研究发现,即使向专家展示完全相同的临床数据,也往往存在显著的诊断差异。基于计算机的图像分析和机器学习技术在特征提取和图像分类中的应用有可能解决许多这些限制。图像处理的最新进展已经导致了用于追踪血管样结构的复杂技术。此外,机器学习技术将使我们能够利用这些现有的注释图像数据库来提高我们的血管分割和疾病分类算法的性能。我们的总体假设是,视网膜血管特征可以量化,并用于帮助临床医生诊断ROP。这些假设将使用两个特定目标进行测试:(1)开发和评估半自动算法以分割视网膜血管并生成一组基于视网膜血管的特征。(2)开发基于计算机的决策支持算法,最好与专家意见相关。总的来说,该项目将建立在从以前的研究开发的基础设施上,为提高临床ROP诊断的准确性和一致性创造潜力,在现实世界的医疗护理期间提供基于计算机的决策支持的演示,并刺激未来的研究,以了解与严重ROP相关的血管特征。该项目将由具有眼科学、生物医学信息学、计算机科学、机器学习和图像处理专业知识的多学科研究人员团队执行。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Manifold Learning by Preserving Distance Orders.
  • DOI:
    10.1016/j.patrec.2013.11.022
  • 发表时间:
    2014-03-01
  • 期刊:
  • 影响因子:
    5.1
  • 作者:
    Ataer-Cansizoglu, Esra;Akcakaya, Murat;Orhan, Umut;Erdogmus, Deniz
  • 通讯作者:
    Erdogmus, Deniz
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MICHAEL F. CHIANG其他文献

MICHAEL F. CHIANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MICHAEL F. CHIANG', 18)}}的其他基金

Translational Vision Science Research at Oregon Health & Science University
俄勒冈健康中心的转化视觉科学研究
  • 批准号:
    8889686
  • 财政年份:
    2013
  • 资助金额:
    $ 19.89万
  • 项目类别:
Automated retinopathy of prematurity classification using machine learning
使用机器学习对早产儿视网膜病变进行自动分类
  • 批准号:
    8445584
  • 财政年份:
    2013
  • 资助金额:
    $ 19.89万
  • 项目类别:
Translational Vision Science Research at Oregon Health & Science University
俄勒冈健康中心的转化视觉科学研究
  • 批准号:
    8475374
  • 财政年份:
    2013
  • 资助金额:
    $ 19.89万
  • 项目类别:
Translational Vision Science Research at Oregon Health & Science University
俄勒冈健康中心的转化视觉科学研究
  • 批准号:
    9084583
  • 财政年份:
    2013
  • 资助金额:
    $ 19.89万
  • 项目类别:
Clinical and Genetic Analysis of Retinopathy of Prematurity
早产儿视网膜病变的临床和遗传学分析
  • 批准号:
    8258001
  • 财政年份:
    2010
  • 资助金额:
    $ 19.89万
  • 项目类别:
Clinical and Genetic Analysis of Retinopathy of Prematurity
早产儿视网膜病变的临床和遗传学分析
  • 批准号:
    7988505
  • 财政年份:
    2010
  • 资助金额:
    $ 19.89万
  • 项目类别:
Clinical and Genetic Analysis of Retinopathy of Prematurity
早产儿视网膜病变的临床和遗传学分析
  • 批准号:
    8144767
  • 财政年份:
    2010
  • 资助金额:
    $ 19.89万
  • 项目类别:
Clinical and genetic analysis of retinopathy of prematurity
早产儿视网膜病变的临床及遗传学分析
  • 批准号:
    9301528
  • 财政年份:
    2010
  • 资助金额:
    $ 19.89万
  • 项目类别:
Telemedical Diagnosis of Retinopathy of Prematurity
早产儿视网膜病变的远程医疗诊断
  • 批准号:
    6611864
  • 财政年份:
    2003
  • 资助金额:
    $ 19.89万
  • 项目类别:
Telemedical Diagnosis of Retinopathy of Prematurity
早产儿视网膜病变的远程医疗诊断
  • 批准号:
    7101754
  • 财政年份:
    2003
  • 资助金额:
    $ 19.89万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 19.89万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了