Understanding the Mechanism of Social Network Influence in Health Outcomes throug
了解社交网络影响健康结果的机制
基本信息
- 批准号:8469321
- 负责人:
- 金额:$ 53.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAmericasAreaAttentionBehaviorBiological MarkersBiometryBody Weight decreasedClinical Trials DesignCollaborationsCommunitiesComplexDataDatabasesDevelopmentDevicesEnabling FactorsEnvironmentGoalsHealthHealth PolicyHealth SciencesHealth behaviorHealthcareHuman ResourcesInformation SystemsInternetInterventionKnowledgeLaboratoriesLeadMachine LearningMapsMethodsMiningModelingNoiseNorth CarolinaOntologyOregonOutcomeOverweightPathway AnalysisPatternPhysical activityPilot ProjectsPrivacyProcessRecommendationResearchResearch PersonnelResearch SupportResourcesRestScientistSemanticsSocial NetworkSocial ReinforcementSocial SciencesSolutionsStatistical ModelsStructureSupport GroupsSystemTechnologyThe SunTrainingUnited States National Institutes of HealthUniversitiesWorkcomputer based Semantic Analysisdata miningdata sharingdesignhuman subjectimprovednovelprogramspublic health relevancesocialtheoriestoolweb-accessibleweb-based social networking
项目摘要
DESCRIPTION (provided by applicant): Research in the design and implementation of the SMASH (Semantic Mining of Activity, Social, and Health data) system will address a critical need for data mining tools to help understanding the influence of healthcare social networks, such as YesiWell, on sustained weight loss where the data are multi-dimensional, temporal, semantically heterogeneous, and very sensitive. System design and implementation will rest on five specific aims. The first aim is to develop a novel data mining and statistical learning approach to understand key factors that enable spread of healthy behaviors in a social network (Aim 1). We propose to develop a formal and expressive Semantic Web ontology for the concepts used in describing the semantic features of healthcare data and social networks. We will then bridge the domain knowledge in healthcare and social networks with formal mappings across those ontological concepts (Aim 2). Next, we propose novel recommendation approaches building on top of the influence modeling and prediction. In addition, we will develop methods to utilize the recommendation as a means to better organize the social network such that the adoption of optimal health behaviors in the network can spread quickly and sustainably (Aim 3). To protect the privacy of human subjects during the data mining process for social network and health data, we consider the enforcement of differential privacy through a privacy preserving analysis layer. We will develop novel solutions to preserve differential privacy for mining dynamic health data and social activities of human subjects (Aim 4). To support this research, we will develop a web- accessible portal so that other researchers with little training i data mining will have shared access to data mining tools, ontologies, and social network analysis results (Aim 5). At the end of this project, data resources, tools, ontologies, and technologies will be made available to the larger research community. This work is an inter-disciplinary collaboration among the PI, Dejing Dou, Co-I Daniel Lowd, both experts in data mining and machine learning, and Jessica Greene, an expert in health policy, at the University of Oregon, Brigitte Piniewski MD, the lead of YesiWell, at PeaceHealth Laboratories, Ruoming Jin, an expert in complex network mining, at Kent State University, Xintao Wu, an expert in privacy preserving mining, at the University of North Carolina at Charlotte, David Kil, the previous Chief Scientist at SKT Americas and program manager of YesiWell, and the founder of HealthMantic, and Junfeng Sun, a mathematical statistician at the NIH and an expert in design of clinical trials.
描述(由申请人提供):SMASH(活动、社交和健康数据的语义挖掘)系统的设计和实施研究将解决数据挖掘工具的关键需求,以帮助理解医疗社交网络(如YesiWell)对持续减肥的影响,其中数据是多维的、时间的、语义异构的,并且非常敏感。系统的设计和实施将基于五个具体目标。第一个目标是开发一种新的数据挖掘和统计学习方法,以了解在社交网络中传播健康行为的关键因素(目标1)。我们建议开发一个正式的和表达语义Web本体的概念,用于描述医疗数据和社交网络的语义特征。然后,我们将在医疗保健和社交网络的领域知识与这些本体概念之间的正式映射(目标2)。接下来,我们提出了建立在影响力建模和预测之上的新推荐方法。此外,我们将开发利用推荐作为更好地组织社交网络的手段的方法,以便在网络中采用最佳健康行为可以快速和可持续地传播(目标3)。为了在社交网络和健康数据的数据挖掘过程中保护人类受试者的隐私,我们考虑通过隐私保护分析层实施差异隐私。我们将开发新的解决方案来保护差异隐私,以挖掘人类受试者的动态健康数据和社交活动(目标4)。为了支持这项研究,我们将开发一个可访问Web的门户网站,以便其他几乎没有受过数据挖掘培训的研究人员可以共享数据挖掘工具、本体和社交网络分析结果(目标5)。在这个项目结束时,数据资源,工具,本体和技术将提供给更大的研究社区。这项工作是PI,Dejing Dou,Co-I丹尼尔Lowd(数据挖掘和机器学习专家),以及俄勒冈州大学卫生政策专家Jessica格林,PeaceHealth实验室YesiWell领导Brigitte Piniewski MD,肯特州立大学复杂网络挖掘专家Ruoming Jin,隐私保护挖掘专家Xintao Wu,在夏洛特的北卡罗来纳州大学,大卫基尔,前首席科学家在SKT美洲和项目经理YesiWell,和HealthMantic的创始人,和孙俊峰,在美国国立卫生研究院的数学统计学家和临床试验设计的专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dejing Dou其他文献
Dejing Dou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dejing Dou', 18)}}的其他基金
Understanding the Mechanism of Social Network Influence in Health Outcomes throug
通过了解社交网络影响健康结果的机制
- 批准号:
8814246 - 财政年份:2013
- 资助金额:
$ 53.4万 - 项目类别:
Understanding the Mechanism of Social Network Influence in Health Outcomes throug
通过了解社交网络影响健康结果的机制
- 批准号:
8656717 - 财政年份:2013
- 资助金额:
$ 53.4万 - 项目类别:
Neural ElectroMagnetic Ontologies: ERP Knowledge Representation & Integration
神经电磁本体:ERP 知识表示
- 批准号:
8069619 - 财政年份:2009
- 资助金额:
$ 53.4万 - 项目类别:
Neural ElectroMagnetic Ontologies: ERP Knowledge Representation & Integration
神经电磁本体:ERP 知识表示
- 批准号:
8269994 - 财政年份:2009
- 资助金额:
$ 53.4万 - 项目类别:
Neural ElectroMagnetic Ontologies: ERP Knowledge Representation & Integration
神经电磁本体:ERP 知识表示
- 批准号:
7585137 - 财政年份:2009
- 资助金额:
$ 53.4万 - 项目类别:
Neural ElectroMagnetic Ontologies: ERP Knowledge Representation & Integration
神经电磁本体:ERP 知识表示
- 批准号:
7816664 - 财政年份:2009
- 资助金额:
$ 53.4万 - 项目类别:
相似海外基金
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 53.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 53.4万 - 项目类别:
Collaborative R&D
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 53.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 53.4万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 53.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 53.4万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 53.4万 - 项目类别:
Operating Grants
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 53.4万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 53.4万 - 项目类别:
EU-Funded
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 53.4万 - 项目类别:
Standard Grant