Understanding the Mechanism of Social Network Influence in Health Outcomes throug
通过了解社交网络影响健康结果的机制
基本信息
- 批准号:8656717
- 负责人:
- 金额:$ 50.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2016-02-29
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAmericasAreaAttentionBehaviorBiological MarkersBiometryBody Weight decreasedClinical Trials DesignCollaborationsCommunitiesComplexDataDatabasesDevelopmentDevicesEnabling FactorsEnvironmentGoalsHealthHealth PolicyHealth SciencesHealth behaviorHealthcareHuman ResourcesInformation SystemsInternetInterventionKnowledgeLaboratoriesLeadMachine LearningMapsMethodsMiningModelingNoiseNorth CarolinaOntologyOregonOutcomeOverweightPathway AnalysisPatternPhysical activityPilot ProjectsPrivacyProcessRecommendationResearchResearch PersonnelResearch SupportResourcesRestScientistSemanticsSocial NetworkSocial ReinforcementSocial SciencesSolutionsStatistical ModelsStructureSupport GroupsSystemTechnologyThe SunTrainingUnited States National Institutes of HealthUniversitiesWorkcomputer based Semantic Analysisdata miningdata sharingdesignhuman subjectimprovednovelprogramspublic health relevancesocialtheoriestoolweb-accessibleweb-based social networking
项目摘要
DESCRIPTION (provided by applicant): Research in the design and implementation of the SMASH (Semantic Mining of Activity, Social, and Health data) system will address a critical need for data mining tools to help understanding the influence of healthcare social networks, such as YesiWell, on sustained weight loss where the data are multi-dimensional, temporal, semantically heterogeneous, and very sensitive. System design and implementation will rest on five specific aims. The first aim is to develop a novel data mining and statistical learning approach to understand key factors that enable spread of healthy behaviors in a social network (Aim 1). We propose to develop a formal and expressive Semantic Web ontology for the concepts used in describing the semantic features of healthcare data and social networks. We will then bridge the domain knowledge in healthcare and social networks with formal mappings across those ontological concepts (Aim 2). Next, we propose novel recommendation approaches building on top of the influence modeling and prediction. In addition, we will develop methods to utilize the recommendation as a means to better organize the social network such that the adoption of optimal health behaviors in the network can spread quickly and sustainably (Aim 3). To protect the privacy of human subjects during the data mining process for social network and health data, we consider the enforcement of differential privacy through a privacy preserving analysis layer. We will develop novel solutions to preserve differential privacy for mining dynamic health data and social activities of human subjects (Aim 4). To support this research, we will develop a web- accessible portal so that other researchers with little training i data mining will have shared access to data mining tools, ontologies, and social network analysis results (Aim 5). At the end of this project, data resources, tools, ontologies, and technologies will be made available to the larger research community. This work is an inter-disciplinary collaboration among the PI, Dejing Dou, Co-I Daniel Lowd, both experts in data mining and machine learning, and Jessica Greene, an expert in health policy, at the University of Oregon, Brigitte Piniewski MD, the lead of YesiWell, at PeaceHealth Laboratories, Ruoming Jin, an expert in complex network mining, at Kent State University, Xintao Wu, an expert in privacy preserving mining, at the University of North Carolina at Charlotte, David Kil, the previous Chief Scientist at SKT Americas and program manager of YesiWell, and the founder of HealthMantic, and Junfeng Sun, a mathematical statistician at the NIH and an expert in design of clinical trials.
描述(由申请人提供):SMASH(活动、社交和健康数据的语义挖掘)系统的设计和实现研究将解决对数据挖掘工具的迫切需求,以帮助理解医疗社交网络(如YesiWell)对持续减肥的影响,其中数据是多维的、时间的、语义上不同的和非常敏感的。系统的设计和实施将取决于五个具体目标。第一个目标是开发一种新的数据挖掘和统计学习方法,以了解使健康行为在社交网络中传播的关键因素(目标1)。我们建议为用于描述医疗数据和社会网络的语义特征的概念开发一个形式化且具有表现力的语义Web本体。然后,我们将在医疗保健和社交网络中的领域知识与这些本体概念之间的正式映射之间架起桥梁(目标2)。接下来,我们在影响力建模和预测的基础上提出了新的推荐方法。此外,我们将制定方法,利用该建议作为更好地组织社会网络的一种手段,以便在网络中采用最佳健康行为能够迅速和可持续地传播(目标3)。为了在社会网络和健康数据的数据挖掘过程中保护人类主体的隐私,我们通过隐私保护分析层来考虑差异隐私的实施。我们将开发新的解决方案来保护不同的隐私,以挖掘人类受试者的动态健康数据和社会活动(目标4)。为了支持这项研究,我们将开发一个网络可访问的门户网站,以便其他几乎没有接受过数据挖掘培训的研究人员可以共享数据挖掘工具、本体和社会网络分析结果(目标5)。在该项目结束时,数据资源、工具、本体和技术将提供给更大的研究社区。这项工作是由数据挖掘和机器学习专家之一的PI、Daniel Lowd和俄勒冈大学的卫生政策专家Jessica Greene、和平卫生实验室的YesiWell的负责人Brigitte Piniewski MD、肯特州立大学的复杂网络挖掘专家金若明、北卡罗来纳大学夏洛特分校的隐私保护专家吴新涛、SKT美洲公司的前首席科学家和YesiWell的项目经理David Kil以及HealthMantic的创始人孙俊峰共同开展的跨学科合作他是美国国立卫生研究院的数理统计学家和临床试验设计方面的专家。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dejing Dou其他文献
Dejing Dou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dejing Dou', 18)}}的其他基金
Understanding the Mechanism of Social Network Influence in Health Outcomes throug
通过了解社交网络影响健康结果的机制
- 批准号:
8814246 - 财政年份:2013
- 资助金额:
$ 50.56万 - 项目类别:
Understanding the Mechanism of Social Network Influence in Health Outcomes throug
了解社交网络影响健康结果的机制
- 批准号:
8469321 - 财政年份:2013
- 资助金额:
$ 50.56万 - 项目类别:
Neural ElectroMagnetic Ontologies: ERP Knowledge Representation & Integration
神经电磁本体:ERP 知识表示
- 批准号:
8069619 - 财政年份:2009
- 资助金额:
$ 50.56万 - 项目类别:
Neural ElectroMagnetic Ontologies: ERP Knowledge Representation & Integration
神经电磁本体:ERP 知识表示
- 批准号:
8269994 - 财政年份:2009
- 资助金额:
$ 50.56万 - 项目类别:
Neural ElectroMagnetic Ontologies: ERP Knowledge Representation & Integration
神经电磁本体:ERP 知识表示
- 批准号:
7585137 - 财政年份:2009
- 资助金额:
$ 50.56万 - 项目类别:
Neural ElectroMagnetic Ontologies: ERP Knowledge Representation & Integration
神经电磁本体:ERP 知识表示
- 批准号:
7816664 - 财政年份:2009
- 资助金额:
$ 50.56万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 50.56万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 50.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 50.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 50.56万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 50.56万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 50.56万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 50.56万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 50.56万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 50.56万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 50.56万 - 项目类别:
Standard Grant