SYSTEM FOR AUTOMATED NONINVASIVE MONITORING OF MOUSE SLEEP AND BEHAVIOR
自动无创监测小鼠睡眠和行为的系统
基本信息
- 批准号:8638993
- 负责人:
- 金额:$ 16.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-04-01 至 2015-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ExperimentationAnimalsAnxietyBehaviorBehavior DisordersBehavior TherapyBehavior assessmentBehavioralBehavioral GeneticsBehavioral ResearchBenchmarkingBrainCharacteristicsCircadian Rhythm Sleep DisordersCircadian RhythmsClassificationClientCognitiveComputer softwareConfidentialityDataDetectionDiabetes MellitusDiscriminationDiseaseElectroencephalographyElectromyographyEnvironmentEpilepsyEvaluationEventFeedbackFloorFrequenciesGenesGeneticGenetic ScreeningGoalsGoldGovernmentGroomingHealthHeredityHome environmentInjuryInvestigationKentuckyLettersMammalsMeasurementMedicalMental DepressionMethodologyMethodsMonitorMotor ActivityMotor SeizuresMouse StrainsMusNarcolepsyNeurosciencesObesityOperative Surgical ProceduresOutcomePatternPerformancePersonsPharmaceutical PreparationsPhasePhenotypePlayPolysomnographyPreclinical Drug EvaluationProtocols documentationQuantitative Trait LociREM SleepREM Sleep ParasomniasRecoveryReflex actionResearchResourcesRodentRoleRunningSensorySignal TransductionSleepSleep Apnea SyndromesSleep ArchitectureSleep DeprivationSleep DisordersSleep StagesSmall Business Innovation Research GrantSolutionsStressSystemTechniquesTechnologyTestingTimeTraumatic Brain InjuryUniversitiesWakefulnessactigraphyawakebasebrain researchcohortdata acquisitionfeedinggene discoveryhigh throughput analysishigh throughput screeninginterestnerve injurynervous system disorderneuropsychiatrynon rapid eye movementnovelpressureprogramsprototypepublic health relevancerespiratoryresponsescreeningsensorsleep onsetsoftware developmentsomatosensorysuccesstooltrait
项目摘要
DESCRIPTION (provided by applicant): The basic functions of sleep are still unknown. Abnormal sleep patterns can manifest as a variety of disorders-sleep apnea, parasomnias, REM (rapid eye movement sleep) behavioral disorder (RBD), narcolepsy-many of which are influenced by heredity. There is an increasing focus on characterizing mouse behaviors for genetic and drug studies. However, discovering the genes responsible for sleep and related disorders requires time-consuming large-scale behavioral screening of phenotypes to correlate observed traits with genetics. Behavioral monitoring of mice is usually limited to actigraphic measurements such as video tracking, wheel-running, and photoelectric beam-breaking. Although many of these methods are noninvasive and have potential for high-throughput (HT) application, they monitor mainly locomotor activity without providing information about sleep-wake state and sleep architecture, which are important for investigating sleep disorders. The current gold standard for sleep analysis in mammals is electroencephalography (EEG) with electromyography (EMG). While EEG can be used to accurately determine sleep-wake state, it is invasive and resource-intensive (surgery, recovery, etc.), which limits its application in large
scale genetic studies with rodents. EEG is therefore a critical barrier to the discovery of genes that promote sleep disorders. Signal Solutions, LLC, has developed a sensor cage environment for noninvasive, HT behavioral monitoring that is being used by many prominent research groups to identify genes responsible for different traits related to sleep and circadian rhythms. The system is based on analysis of the signal generated by a pressure- sensitive piezoelectric sensor attached to the cage floor, and can already discriminate sleep from wakefulness with high accuracy and track changes in respiratory effort when the animal is relatively inactive. The Sunderam Lab at the University of Kentucky has used Signal Solutions' "piezo" system to develop techniques and obtain preliminary data suggesting that pressure changes associated with respiratory effort may distinguish REM and non-REM (NREM) stages of sleep as verified by simultaneous EEG/EMG recordings. The specific aims of this application are to determine whether the piezo system can noninvasively: 1. Discriminate sleep-wake state (sleep/wake, REM/NREM) and behavior within wake (e.g., quiet vs. active, high activity, feeding, grooming) at a level comparable to EEG/EMG by classifying piezo signal features; 2. Identify outliers in a cohort and differentiate strains of mice with known sleep differences on the basis of specific sleep traits (percent time in each state, mean bout frequency and duration, sleep-onset REM); and 3. Develop the capability to apply and quantify responses to sensory stimulation for selective sleep restriction and startle reflex measurement. The purpose of this investigation is to
integrate and test these additional capabilities in the piezo system. The envisioned end product is a sensor cage and software interface for high-throughput monitoring of sleep- wake state and behavior in small animals (e.g., KO mice, QTL analyses) to identify genetic factors responsible for sleep/circadian disorders as well as behavioral effects of pharmacological manipulation, sensory stimulation, or neural injury (e.g., traumatic brain injury, epilepsy). This system will be
particularly advantageous for prescreening potentially interesting phenotypes, and reserving invasive EEG analysis for further confirmation. The current system for classifying sleep vs. wake is essentially as good as EEG/EMG; REM/NREM would be extremely valuable as a first pass screen. Medical targets of interest are sleep/circadian disorders, sleep apnea, obesity/diabetes, REM/NREM sleep deprivation, and stress, among others. Potential clients include academic research labs as well as industrial labs interested in behavioral monitoring on a large scale (e.g. drug screening), and upgrades to existing users.
描述(由申请人提供):睡眠的基本功能仍然未知。异常的睡眠模式可以表现为各种各样的疾病--睡眠呼吸暂停、异态睡眠、快速眼动睡眠(REM)行为障碍(RBD)、嗜睡症--其中许多都受到遗传的影响。有越来越多的关注表征遗传和药物研究的小鼠行为。然而,发现负责睡眠和相关疾病的基因需要耗时的大规模表型行为筛选,以将观察到的特征与遗传学相关联。小鼠的行为监测通常仅限于活动记录测量,如视频跟踪、轮跑和光电光束中断。虽然许多这些方法是非侵入性的,并有潜力的高通量(HT)的应用,他们主要监测运动活动,而不提供有关睡眠-觉醒状态和睡眠结构,这是重要的调查睡眠障碍的信息。目前哺乳动物睡眠分析的金标准是脑电图(EEG)和肌电图(EMG)。虽然EEG可用于准确地确定睡眠-觉醒状态,但它是侵入性的和资源密集型的(手术、恢复等),这限制了其在大范围内的应用
对啮齿类动物进行大规模遗传学研究。因此,脑电图是发现促进睡眠障碍的基因的关键障碍。Signal Solutions,LLC开发了一种用于非侵入性HT行为监测的传感器笼环境,许多著名的研究小组正在使用该环境来识别负责与睡眠和昼夜节律相关的不同特征的基因。该系统基于对附在笼子地板上的压敏压电传感器产生的信号的分析,并且已经可以高精度地区分睡眠和觉醒,并在动物相对不活动时跟踪呼吸努力的变化。肯塔基州大学的Sunderam实验室使用Signal Solutions的“压电”系统开发技术并获得初步数据,表明与呼吸努力相关的压力变化可以区分REM和非REM(NREM)睡眠阶段,并通过同步EEG/EMG记录进行验证。本申请的具体目的是确定压电系统是否可以非侵入性地:1。区分睡眠-觉醒状态(睡眠/觉醒,REM/NREM)和觉醒内的行为(例如,安静与活跃、高活动、进食、梳理),通过对压电信号特征进行分类,在与EEG/EMG相当的水平上; 2.识别组群中的离群值,并基于特定的睡眠特征(每种状态的时间百分比、平均回合频率和持续时间、睡眠发作REM)区分具有已知睡眠差异的小鼠品系;以及发展应用和量化对感官刺激的反应的能力,以进行选择性睡眠限制和惊吓反射测量。这次调查的目的是
在压电系统中集成和测试这些附加功能。设想的最终产品是用于高通量监测小动物(例如,KO小鼠,QTL分析)以鉴定负责睡眠/昼夜节律紊乱以及药理学操作、感觉刺激或神经损伤(例如,创伤性脑损伤、癫痫)。该系统将
特别有利于预筛选潜在感兴趣的表型,并保留侵入性EEG分析用于进一步确认。目前用于分类睡眠与清醒的系统基本上与EEG/EMG一样好; REM/NREM作为第一次筛选非常有价值。感兴趣的医学目标是睡眠/昼夜节律紊乱、睡眠呼吸暂停、肥胖/糖尿病、REM/NREM睡眠剥夺和压力等。潜在客户包括学术研究实验室以及对大规模行为监测(例如药物筛选)感兴趣的工业实验室,以及对现有用户的升级。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A comparative study of sleep and diurnal patterns in house mouse (Mus musculus) and Spiny mouse (Acomys cahirinus).
家鼠(Mus musculus)和刺鼠(Acomys cahirinus)睡眠和昼夜模式的比较研究。
- DOI:10.1038/s41598-020-67859-w
- 发表时间:2020
- 期刊:
- 影响因子:4.6
- 作者:Wang,Chanung;Guerriero,LaurenE;Huffman,DillonM;Ajwad,AsmaaA;Brooks,TraeC;Sunderam,Sridhar;Seifert,AshleyW;O'Hara,BruceF
- 通讯作者:O'Hara,BruceF
A real-time sleep scoring framework for closed-loop sleep manipulation in mice.
用于小鼠闭环睡眠操纵的实时睡眠评分框架。
- DOI:10.1111/jsr.13262
- 发表时间:2021
- 期刊:
- 影响因子:4.4
- 作者:Huffman,Dillon;Ajwad,Asma'a;Yaghouby,Farid;O'Hara,BruceF;Sunderam,Sridhar
- 通讯作者:Sunderam,Sridhar
SegWay: A simple framework for unsupervised sleep segmentation in experimental EEG recordings.
SegWay:实验脑电图记录中无监督睡眠分割的简单框架。
- DOI:10.1016/j.mex.2016.02.003
- 发表时间:2016
- 期刊:
- 影响因子:1.9
- 作者:Yaghouby,Farid;Sunderam,Sridhar
- 通讯作者:Sunderam,Sridhar
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruce F O'Hara其他文献
Bruce F O'Hara的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruce F O'Hara', 18)}}的其他基金
SYSTEM FOR AUTOMATED NONINVASIVE MONITORING OF MOUSE SLEEP AND BEHAVIOR
自动无创监测小鼠睡眠和行为的系统
- 批准号:
8524443 - 财政年份:2013
- 资助金额:
$ 16.88万 - 项目类别:
相似海外基金
Development of a Drosophila-based platform to replace and reduce animal experimentation in epilepsy research
开发基于果蝇的平台来取代和减少癫痫研究中的动物实验
- 批准号:
NC/V001051/1 - 财政年份:2020
- 资助金额:
$ 16.88万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Ethical Issues in Animal Experimentation
博士论文研究:动物实验的伦理问题
- 批准号:
1424484 - 财政年份:2014
- 资助金额:
$ 16.88万 - 项目类别:
Standard Grant
Tissue formation involving stem/progenitor cell research and animal experimentation (N01)
涉及干/祖细胞研究和动物实验的组织形成(N01)
- 批准号:
30245585 - 财政年份:2006
- 资助金额:
$ 16.88万 - 项目类别:
Collaborative Research Centres
Animal Experimentation system as an infrastructure to support translational progression of diabetes research to medical practice
动物实验系统作为支持糖尿病研究向医学实践转化的基础设施
- 批准号:
17200029 - 财政年份:2005
- 资助金额:
$ 16.88万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Animal experimentation and cardiac phenotyping of transgenic mouse models
转基因小鼠模型的动物实验和心脏表型分析
- 批准号:
13327687 - 财政年份:2005
- 资助金额:
$ 16.88万 - 项目类别:
Research Units