PKC Epsilon in Vascular Dysfunction
PKC Epsilon 在血管功能障碍中的应用
基本信息
- 批准号:8698299
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAnimal ModelAtherosclerosisBindingBlood VesselsCardiovascular DiseasesCardiovascular systemCarotid Artery PlaquesCause of DeathCell modelCellsCellular StressClinicalClinical ResearchCoculture TechniquesComplicationCritical PathwaysDeveloped CountriesDiabetes MellitusDiseaseDisease ProgressionDistressEtiologyFoundationsFunctional disorderGoalsHeart AtriumHumanHyperplasiaInjuryInsulinInsulin ResistanceInterventionInvestigationIschemiaKnowledgeLaboratoriesMatrix MetalloproteinasesMediatingMitochondriaMitogen-Activated Protein KinasesModelingMolecularMolecular ModelsMusMyocardiumOutcomePatientsPeptidesPopulationProceduresProcessProductionProteomicsRattusReactive Oxygen SpeciesReperfusion InjuryReperfusion TherapyResearchRiskRoleSignal PathwaySmooth Muscle MyocytesSolidSystemTherapeuticTimeTissuesTransgenic OrganismsTranslatingTransplantationVascular Diseasesaldehyde dehydrogenasesbasecardiovascular risk factorcell injuryclinically relevantdiabeticimprovedin vivoinnovationmacrophagemolecular modelingnew therapeutic targetnovelnovel therapeuticsprotein kinase C epsilonresistinrestenosistreatment strategy
项目摘要
DESCRIPTION (provided by applicant):
Atherosclerosis is the leading cause of death in the developed countries. Diabetes mellitus markedly increases the risk of atherosclerotic complications. Emerging evidence suggests that resistin, a novel adipokine implicated in insulin resistin, contributes to atherosclerotic disease and the poor interventional outcomes among diabetic population. We and others have shown that resistin significantly induces vascular smooth muscle cell (VSMC) dysfunction, a key step in intimal hyperplasia and restenosis. However, little is known about the underlying mechanisms and the treatment option is largely lacking. Recently, we demonstrated that the cellular effect of resistin was mediated by PKC-[. Our research team also showed that activating PKC-¿ protected against ischemia/reperfusion injury of transplanted myocardium and inhibiting PKC-¿ mitigated intimal hyperplasia in rat. Although therapeutically targeting PKC-¿ in the treatment of atherosclerotic complications is largely unknown. Based on our novel, seemingly controversial observations, we believe that the involvement of PKC-¿ in cardiovascular disease is a dynamic process. Acute activation of PKC-¿ protects against ischemia/reperfusion-induced cellular injuries whereas sustained inhibition of PKC-¿ following procedures can minimize resistin-induced intimal hyperplasia and restenosis. It is our fundamental hypothesis that time-specific PKC-¿ modulation reduces resistin-induced intimal hyperplasia and restenosis. To pursue this hypothesis, we propose a more comprehensive investigation to elucidate the molecular mechanisms, cellular effects, and in vivo influences of PKC-¿ modulation in resistin-exaggerated cellular stress following vascular injury. Three specific aims (SA) are proposed. SA 1: Determine the role of PKC-¿ in resistin-induced cellular effects. In this SA, we will first confirm our preliminary findings and determine time-specific PKC-¿ modulation in VSMC. We will then explore the modulating effect of PKC-¿ using a novel activated macrophage-VSMC co-culture system. Lastly, we will verify the effects of resistin and PKC-¿ modulation in ex vivo human carotid plaques. SA 2: Characterize the molecular mechanisms of PKC-¿-dependent resistin-induced cellular distress. Using a HCASMC model, we will study the involvement of PKC-¿ in resistin-induced ROS over-production in the SA2a. We will also expand our preliminary observation by examining time-specific PKC-¿ modulation in known resistin-induced signaling pathways in SA2b. Lastly, we will explore novel PKC-¿-dependent downstream signaling pathway(s) using an unbiased proteomics approach and determine whether a novel PKC-¿-mediated molecular interaction, mitochondria aldehyde dehydrogenase (ALDH2), is involved in resistin- induced cellular dysfunction (SA2c). SA 3: Evaluate the effects PKC-¿ on resistin-augmented post-injury intimal hyperplasia in a murine model. We will independently modulate PKC-¿ before atrial clamping and after vascular interventions to determine the in vivo effects of time-specific PKC-¿ modulation on resistin-exacerbated intimal hyperplasia using a transgenic murine model. The potential application of novel PKC-¿ specific peptide modulators at specific time points, justified by successful completion of our aims, represents a novel therapeutic option. Deciphering clinically-relevant mechanism(s) of intimal hyperplasia and ultimately translating these into a novel therapeutic strategy to suppress disease progression supports our long-term goal of minimizing complications of cardiovascular diseases and improving the clinical outcome of cardiovascular procedures.
描述(由申请人提供):
动脉粥样硬化是发达国家的首要死因。糖尿病显着增加动脉粥样硬化并发症的风险。新的证据表明,抵抗素(一种与胰岛素抵抗素有关的新型脂肪因子)会导致动脉粥样硬化疾病和糖尿病人群的不良干预结果。我们和其他人已经证明抵抗素显着诱导血管平滑肌细胞(VSMC)功能障碍,这是内膜增生和再狭窄的关键步骤。然而,人们对潜在的机制知之甚少,并且基本上缺乏治疗方案。最近,我们证明抵抗素的细胞作用是由 PKC-[ 介导的。我们的研究小组还表明,激活 PKC-¿ 可以保护大鼠移植心肌免受缺血/再灌注损伤,抑制 PKC-¿ 可以减轻大鼠内膜增生。尽管在治疗动脉粥样硬化并发症中靶向 PKC-¿ 的治疗方法在很大程度上尚不清楚。基于我们新颖的、看似有争议的观察结果,我们认为 PKC-¿ 参与心血管疾病是一个动态过程。 PKC-¿ 的急性激活可防止缺血/再灌注引起的细胞损伤,而手术后持续抑制 PKC-¿ 可以最大限度地减少抵抗素引起的内膜增生和再狭窄。我们的基本假设是,时间特异性 PKC-¿ 调节可减少抵抗素诱导的内膜增生和再狭窄。为了实现这一假设,我们提出了一项更全面的研究,以阐明血管损伤后抵抗素夸大的细胞应激中 PKC-¿ 调节的分子机制、细胞效应和体内影响。提出了三个具体目标(SA)。 SA 1:确定 PKC-¿ 在抵抗素诱导的细胞效应中的作用。在本 SA 中,我们将首先确认我们的初步发现并确定 VSMC 中的时间特异性 PKC-¿ 调制。然后,我们将使用新型活化巨噬细胞-VSMC 共培养系统探索 PKC-¿ 的调节作用。最后,我们将验证抵抗素和 PKC-¿ 调节在离体人颈动脉斑块中的作用。 SA 2:描述 PKC 依赖的抵抗素诱导的细胞应激的分子机制。使用 HCASMC 模型,我们将研究 PKC-¿ 在 SA2a 中抵抗素诱导的 ROS 过量产生中的作用。我们还将通过检查 SA2b 中已知抵抗素诱导的信号通路中的时间特异性 PKC-¿ 调节来扩展我们的初步观察。最后,我们将使用无偏蛋白质组学方法探索新的 PKC-¿ 依赖性下游信号通路,并确定新的 PKC-¿ 介导的分子相互作用,即线粒体醛脱氢酶 (ALDH2),是否参与抵抗素诱导的细胞功能障碍 (SA2c)。 SA 3:在小鼠模型中评估 PKC-¿ 对抵抗素增强的损伤后内膜增生的影响。我们将在心房钳夹之前和血管干预之后独立调节 PKC-¿,以确定时间特异性 PKC-¿ 调节对使用转基因小鼠模型抵抗素加剧的内膜增生的体内影响。新型 PKC-¿ 特异性肽调节剂在特定时间点的潜在应用,通过成功完成我们的目标来证明,代表了一种新的治疗选择。破译内膜增生的临床相关机制并最终将其转化为抑制疾病进展的新治疗策略,支持我们最大限度地减少心血管疾病并发症和改善心血管手术临床结果的长期目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wei Zhou其他文献
Spin Waves Excitations of Co/PtMultilayers
Co/Pt 多层膜的自旋波激发
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Wei Zhou - 通讯作者:
Wei Zhou
Wei Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wei Zhou', 18)}}的其他基金
Targeting LKB1-null lung adenocarcinoma with innate immune system
利用先天免疫系统靶向 LKB1 缺失的肺腺癌
- 批准号:
10752833 - 财政年份:2023
- 资助金额:
-- - 项目类别:
An integrative approach to disease gene discovery combining genetic variation, gene expression, and epigenetics.
结合遗传变异、基因表达和表观遗传学的疾病基因发现的综合方法。
- 批准号:
10581608 - 财政年份:2022
- 资助金额:
-- - 项目类别:
An integrative approach to disease gene discovery combining genetic variation, gene expression, and epigenetics.
结合遗传变异、基因表达和表观遗传学的疾病基因发现的综合方法。
- 批准号:
10349878 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Role of orexin/hypocretin circuit in anesthesia and analgesia
食欲素/下丘脑分泌素回路在麻醉和镇痛中的作用
- 批准号:
10651642 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Role of orexin/hypocretin circuit in anesthesia and analgesia
食欲素/下丘脑分泌素回路在麻醉和镇痛中的作用
- 批准号:
10186780 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Role of orexin/hypocretin circuit in anesthesia and analgesia
食欲素/下丘脑分泌素回路在麻醉和镇痛中的作用
- 批准号:
10430182 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Role of orexin/hypocretin circuit in anesthesia and analgesia
食欲素/下丘脑分泌素回路在麻醉和镇痛中的作用
- 批准号:
10040369 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
-- - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




