Mechanisms of Renoprotection by Soluble Epoxide Hydrolase Inhibition

可溶性环氧化物水解酶抑制的肾脏保护机制

基本信息

项目摘要

DESCRIPTION (provided by applicant): Soluble epoxide hydrolase (sEH) is a dual function Phase II metabolic enzyme that catalyzes the hydrolysis of both xenobiotic and endobiotic epoxides. sEH metabolism of xenobiotic epoxides often results in their detoxification and accelerated elimination, whereas that of endobiotic epoxides is generally associated with attenuation of epoxide biological properties. Endogenous substrates of sEH are unsaturated fatty acid epoxides, including epoxyeicosatrienoic acids (EETs), which are major products of cytochrome P450 (CYP)-catalyzed metabolism of arachidonic acid, an essential fatty acid nutrient. The hydrolysis of EETs to their corresponding dihydroxyeicosatrienoic acids by sEH has recently emerged as a key factor controlling the biological effects of EETs, including vasoactive, anti- inflammatory and anti-apoptotic effects. Recent preliminary data from our laboratory shows that chemical or genetic disruption of sEH activity protects against acute kidney injury induced by cisplatin treatment. Specifically, the protective effects of sEH inhibition are associated with decreased inflammation and a dramatic attenuation of apoptosis. The focus of this proposal is to understand the mechanistic basis for the renoprotection afforded by disruption of sEH activity. Three specific aims are proposed to test the overall hypothesis that inhibition of sEH protects against acute kidney injury. The first aim will identify the signaling pathways involved in the renoprotective effect of sEH inhibition in a cisplatin model of acute kidney injury. The role of NF-?B and PPAR? signaling will be examined, particularly with respect to the anti-inflammatory effects of sEH inhibition in acute kidney injury. The effect of sEH inhibition on the intrinsic mitochondrial apoptotic pathway will also be investigated. Studies proposed for the second aim will extend our findings in a cisplatin model of acute kidney injury to additional models which involve different renal insults and signaling pathways. The renoprotective properties of sEH inhibition will be studied in both a unilateral ureter ligation model and in ischemia/reperfusion. Finally, the third aim will directly test the ability of EETs to protect against drug- or ischemia-induced renal cell injury, using cultured renal epithelial cells. The relative contribution of vascular versus tubular formed fatty acid epoxides in renoprotection will also be tested, using mouse strains with tissue specific overexpression or disruption of CYP epoxygenases and sEH. A combination of chemical and genetic tools to modulate sEH activity and EET production provide the critical framework to advance our preliminary observation of renoprotection associated with sEH inhibition. A long term goal of these studies is to develop strategies for the therapeutic modulation of sEH for the prevention and treatment of acute kidney injury. The general nature of the anti-inflammatory and anti-apoptotic effects of sEH inhibition will make our findings more broadly relevant to diseases affecting other organs as well. PUBLIC HEALTH RELEVANCE: Acute kidney injury is a complex syndrome occurring in 20% to 30% of critically ill patients, and is associated with increased mortality, hospitalization, use of healthcare resources, and costs. Despite decades of research in animal models, effective strategies for prevention of acute kidney injury have yet to make it to the clinic. The studies proposed in this application will explore a novel pathway for protection against acute kidney injury which exploits an abundant renal fatty acid epoxide with established roles in inflammation and apoptosis.
描述(由申请人提供):可溶性环氧化物水解酶(sEH)是一种双功能II期代谢酶,催化异生质和内生环氧化物的水解。外源性环氧化物的sEH代谢通常导致其解毒和加速消除,而内源性环氧化物的sEH代谢通常与环氧化物生物学性质的衰减有关。sEH的内源性底物是不饱和脂肪酸环氧化物,包括环氧二十碳三烯酸(E13),其是细胞色素P450(E13)催化的花生四烯酸(必需脂肪酸营养素)代谢的主要产物。最近,通过sEH将雌二醇水解成其相应的二羟基二十碳三烯酸已成为控制雌二醇生物效应的关键因素,包括血管活性、抗炎和抗凋亡效应。我们实验室最近的初步数据显示,sEH活性的化学或遗传破坏可防止顺铂治疗诱导的急性肾损伤。具体而言,sEH抑制的保护作用与炎症减少和细胞凋亡的显著减弱相关。该建议的重点是了解破坏sEH活性所提供的肾保护的机制基础。提出了三个具体目标来检验抑制sEH防止急性肾损伤的总体假设。第一个目标是确定在急性肾损伤的顺铂模型中sEH抑制的肾保护作用所涉及的信号通路。NF-?B和PPAR?将检查信号传导,特别是关于sEH抑制在急性肾损伤中的抗炎作用。还将研究sEH抑制对内在线粒体凋亡途径的影响。为第二个目标提出的研究将把我们在顺铂急性肾损伤模型中的发现扩展到涉及不同肾损伤和信号通路的其他模型。将在单侧输尿管结扎模型和缺血/再灌注模型中研究sEH抑制的肾保护特性。最后,第三个目标将使用培养的肾上皮细胞直接测试Eclase保护免受药物或缺血诱导的肾细胞损伤的能力。还将使用组织特异性过表达或破坏α-环氧合酶和sEH的小鼠品系,测试血管与肾小管形成的脂肪酸环氧化物在肾保护中的相对贡献。调节sEH活性和EET产生的化学和遗传工具的组合提供了关键框架,以推进我们对与sEH抑制相关的肾保护的初步观察。这些研究的长期目标是开发用于预防和治疗急性肾损伤的sEH的治疗性调节的策略。sEH抑制的抗炎和抗凋亡作用的一般性质将使我们的发现更广泛地与影响其他器官的疾病相关。 公共卫生相关性:急性肾损伤是一种复杂的综合征,发生在20%至30%的重症患者中,与死亡率、住院率、医疗资源使用和成本增加相关。尽管在动物模型上进行了数十年的研究,但预防急性肾损伤的有效策略尚未进入临床。本申请中提出的研究将探索一种新的保护急性肾损伤的途径,该途径利用了丰富的肾脂肪酸环氧化物,其在炎症和细胞凋亡中具有既定的作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Deanna L Kroetz其他文献

Exploiting the complexity of the genome and transcriptome using pharmacogenomics towards personalized medicine
  • DOI:
    10.1186/gb-2011-12-1-301
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Reiner Hoppe;Hiltrud Brauch;Deanna L Kroetz;Manel Esteller
  • 通讯作者:
    Manel Esteller

Deanna L Kroetz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Deanna L Kroetz', 18)}}的其他基金

Sphingolipid Signaling and Chemotherapy-Induced Peripheral Neurotoxicity
鞘脂信号传导和化疗引起的周围神经毒性
  • 批准号:
    10643811
  • 财政年份:
    2021
  • 资助金额:
    $ 36.18万
  • 项目类别:
Contribution of Nuclear S1P Signaling to Microtubule Targeting Agent-Induced Changes in Transcriptional Activity in Human iPS-SNs
核 S1P 信号传导对微管靶向剂诱导的人类 iPS-SN 转录活性变化的贡献
  • 批准号:
    10599009
  • 财政年份:
    2021
  • 资助金额:
    $ 36.18万
  • 项目类别:
Sphingolipid Signaling and Chemotherapy-Induced Peripheral Neurotoxicity
鞘脂信号传导和化疗引起的周围神经毒性
  • 批准号:
    10947162
  • 财政年份:
    2021
  • 资助金额:
    $ 36.18万
  • 项目类别:
Sphingolipid Signaling and Chemotherapy-Induced Peripheral Neurotoxicity
鞘脂信号传导和化疗引起的周围神经毒性
  • 批准号:
    10230429
  • 财政年份:
    2021
  • 资助金额:
    $ 36.18万
  • 项目类别:
Sphingolipid Signaling and Chemotherapy-Induced Peripheral Neurotoxicity
鞘脂信号传导和化疗引起的周围神经毒性
  • 批准号:
    10737832
  • 财政年份:
    2021
  • 资助金额:
    $ 36.18万
  • 项目类别:
Sphingolipid Signaling and Chemotherapy-Induced Peripheral Neurotoxicity
鞘脂信号传导和化疗引起的周围神经毒性
  • 批准号:
    10373099
  • 财政年份:
    2021
  • 资助金额:
    $ 36.18万
  • 项目类别:
2019 Multi-Drug Efflux Systems GRC/GRS
2019 多药物外排系统 GRC/GRS
  • 批准号:
    9760371
  • 财政年份:
    2019
  • 资助金额:
    $ 36.18万
  • 项目类别:
Mechanisms of Renoprotection by Soluble Epoxide Hydrolase Inhibition
可溶性环氧化物水解酶抑制的肾脏保护机制
  • 批准号:
    8325925
  • 财政年份:
    2010
  • 资助金额:
    $ 36.18万
  • 项目类别:
Mechanisms of Renoprotection by Soluble Epoxide Hydrolase Inhibition
可溶性环氧化物水解酶抑制的肾脏保护机制
  • 批准号:
    7885244
  • 财政年份:
    2010
  • 资助金额:
    $ 36.18万
  • 项目类别:
Mechanisms of Renoprotection by Soluble Epoxide Hydrolase Inhibition
可溶性环氧化物水解酶抑制的肾脏保护机制
  • 批准号:
    8118786
  • 财政年份:
    2010
  • 资助金额:
    $ 36.18万
  • 项目类别:

相似海外基金

Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
  • 批准号:
    MR/Y009568/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
  • 批准号:
    10090332
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
  • 批准号:
    MR/X02329X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
  • 批准号:
    MR/X021882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
  • 批准号:
    MR/X029557/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
  • 批准号:
    EP/Y003527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
  • 批准号:
    EP/Y030338/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
  • 批准号:
    2312694
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
  • 批准号:
    24K19395
  • 财政年份:
    2024
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
  • 批准号:
    484000
  • 财政年份:
    2023
  • 资助金额:
    $ 36.18万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了