Intelligent Sensor System for Early Illness Alerts in Senior Housing
用于老年住宅早期疾病警报的智能传感器系统
基本信息
- 批准号:8662807
- 负责人:
- 金额:$ 56.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-16 至 2016-03-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAcuteAffectAgeAgitationAlgorithmsAmericanBedsBlood GlucoseBreathingCaregiversChronicChronic DiseaseClinical effectivenessComplexDataDetectionDevicesDisease ManagementEarly DiagnosisEarly InterventionEarly treatmentElderlyEnvironmentEquipmentGaitHandHealthHealth Care CostsHealth PersonnelHealth StatusHealthcareHome Nursing CareHome environmentHospitalizationHousingInterventionIntervention StudiesLeftLength of StayLifeMeasuresMethodsMonitorMorbidity - disease rateMotionNursing HomesParticipantPatient Self-ReportPatternPhysiologic pulsePilot ProjectsPopulationPreventionProspective StudiesPulse OximetryRecoveryRecruitment ActivitySample SizeSamplingSleepSpeedSystemTimeUnited StatesWeightWorkactive controlbasecostcost effectivenessfunctional declinefunctional improvementgraspimprovedinformation displayinterestmortalitymultiple chronic conditionsprospectivepublic health relevancesensortelehealthweb based interface
项目摘要
DESCRIPTION: Chronic disease management is the biggest health care problem facing the United States today. In 2005, nearly 1 in 2 Americans (133 million) had at least one chronic condition, and 21% of the population had multiple chronic conditions. These numbers will steadily increase over the next 30 years. Chronic diseases especially affect older adults in whom exacerbations result in dramatic changes and decline in health status, hospitalization, complex treatment interventions, and high cost. Early illness recognition and early treatment is not only a key to improving health status with rapid recovery after an exacerbation of a chronic illness or acute illness, but also a key to reducing morbidity and mortality in older adults and controlling costs of health care. We propose to build on our recently completed pilot intervention study (NINR R21, Rantz, PI). In that study, we developed alerts for our intelligent sensor system (not telehealth that measures traditional vital signs, weight, pulse oximetry, blood sugar) and used it prospectively to measure functional ability in older adults and actually detected changes in chronic diseases or acute illnesses on average 10 days to 2 weeks before usual assessment methods or self-reports of illness. Inexpensive sensors are embedded in the environment, so subjects do not "have to use" or "wear" any devices. The R21 was to: 1) develop alerts based on the sensor data to notify health care providers of early signs of illness or functional decline so they could further evaluate and intervene with early treatment; 2) further
develop and refine a web-based interface to display the sensor data to health care providers; and 3) determine the sample size for an intervention study that would measure the clinical effectiveness and cost-effectiveness of using the sensor system with alerts in elder housing. Now, we propose to conduct a prospective intervention study to measure the clinical effectiveness and cost effectiveness of using sensor data to detect early signs of illness or functional decline in older adults compared to usual health assessment. A larger sample of older adults will be recruited; they live in a different independent housing than where the pilot study was conducted. While preparing the staff in the different housing setting to work with alerts from our intelligent sensor system, we will adjust, if necessary, the algorithms for automated alerts or
the web-based interface for health care providers. Following the prospective study, we will develop and refine ways of providing sensor information to older adults and informal caregivers to help them directly better manage changes in health status. Our intelligent sensor system enables early detection of illness or functional decline, the key to successful less invasive, time
consuming, and expensive interventions. Helping older adults remain healthier, active, and control their chronic illnesses with early detection of changes in health status and early intervention by health care providers, can result in millions of people remaining independent as they age, avoiding or reducing debilitating and costly hospital stays, and for many, avoiding or delaying nursing home care. This application will be of interest to both NINR and NIA.
描述:慢性病管理是当今美国面临的最大的医疗保健问题。2005年,近1/2的美国人(1.33亿)至少患有一种慢性病,21%的人口患有多种慢性病。这些数字在未来30年将稳步增长。慢性病尤其影响老年人,他们的病情恶化导致健康状况、住院、复杂的治疗干预和高昂的费用发生戏剧性的变化和下降。早期识别和早期治疗不仅是改善慢性病或急性疾病恶化后迅速康复的健康状况的关键,也是降低老年人发病率和死亡率、控制医疗费用的关键。我们建议在最近完成的试验性干预研究(NINR R21,Rantz,PI)的基础上再接再厉。在那项研究中,我们为我们的智能传感器系统(而不是测量传统生命体征、体重、脉搏血氧仪和血糖的远程健康)开发了警报,并前瞻性地使用它来衡量老年人的功能能力,并在通常的评估方法或疾病自我报告之前平均10天至2周实际检测到慢性病或急性疾病的变化。廉价的传感器被嵌入到环境中,因此受试者不需要“使用”或“佩戴”任何设备。R21的目的是:1)根据传感器数据开发警报,通知卫生保健提供者疾病或功能衰退的早期迹象,以便他们能够进一步评估和干预早期治疗;2)进一步
开发和改进基于网络的界面,以向医疗保健提供者显示传感器数据;以及3)确定干预研究的样本量,该研究将衡量在养老院使用带有警报的传感器系统的临床效果和成本效益。现在,我们建议进行一项前瞻性干预研究,以衡量与通常的健康评估相比,使用传感器数据检测老年人疾病或功能衰退的早期迹象的临床效果和成本效益。将招募更多的老年人样本;他们住在与试点研究进行时不同的独立住房中。当不同住房环境中的员工准备好使用来自我们的智能传感器系统的警报时,我们将在必要时调整自动警报的算法或
为医疗保健提供者提供的基于Web的界面。在这项前瞻性研究之后,我们将开发和改进向老年人和非正式照顾者提供传感器信息的方法,以帮助他们直接更好地管理健康状况的变化。我们的智能传感器系统能够及早发现疾病或功能衰退,这是成功减少侵入性的关键,时间
耗时、昂贵的干预措施。通过及早发现健康状况的变化和医疗保健提供者的早期干预来帮助老年人保持更健康、更活跃并控制他们的慢性病,可以使数百万人在他们变老时保持独立,避免或减少虚弱和昂贵的住院时间,对许多人来说,避免或推迟疗养院护理。NINR和NIA都会对这一应用感兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MARILYN J RANTZ其他文献
MARILYN J RANTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MARILYN J RANTZ', 18)}}的其他基金
Intelligent Sensor System for Early Illness Alerts in Senior Housing
用于老年住宅早期疾病警报的智能传感器系统
- 批准号:
8478491 - 财政年份:2013
- 资助金额:
$ 56.76万 - 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
- 批准号:
8281330 - 财政年份:2009
- 资助金额:
$ 56.76万 - 项目类别:
Technology to Automatically Detect Early Signs of Illness in Senior Housing
自动检测老年住宅早期疾病迹象的技术
- 批准号:
7914329 - 财政年份:2009
- 资助金额:
$ 56.76万 - 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
- 批准号:
7933742 - 财政年份:2009
- 资助金额:
$ 56.76万 - 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
- 批准号:
7785679 - 财政年份:2009
- 资助金额:
$ 56.76万 - 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
- 批准号:
8111672 - 财政年份:2009
- 资助金额:
$ 56.76万 - 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
- 批准号:
6916924 - 财政年份:2005
- 资助金额:
$ 56.76万 - 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
- 批准号:
7193528 - 财政年份:2005
- 资助金额:
$ 56.76万 - 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
- 批准号:
7056802 - 财政年份:2005
- 资助金额:
$ 56.76万 - 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
- 批准号:
7572957 - 财政年份:2005
- 资助金额:
$ 56.76万 - 项目类别:
相似海外基金
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Collaborative R&D
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Fellowship
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 56.76万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 56.76万 - 项目类别:
Operating Grants














{{item.name}}会员




