Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing

自动检测跌倒并评估老年住宅跌倒风险的技术

基本信息

  • 批准号:
    8111672
  • 负责人:
  • 金额:
    $ 49.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): One in every three people age 65 or older falls each year, making falls the most common cause of injuries and hospitalizations for trauma in older adults and the leading cause of death due to injury (CDC, 2006). Researchers have studied falls, fall risk assessment, and interventions to prevent falls. However, to date, their methods require that research staff or clinicians complete multi-factorial assessments of fall risk and that research subjects maintain logs of falls, wear devices that measure changes in positions that could indicate a fall or activate an alarm that they need assistance. Building on our current work, we propose to validate and deploy an innovative technological approach that automatically detects when falls have occurred or when the risk of falls is increasing. Subjects will not have to press buttons, pull cords or wear any devices. This new "passive" approach using sensors in the home could revolutionize detecting and preventing falls as well as measuring fall risk. By detecting falls or increasing fall risk early, this new technology can act as a trigger for elders, family members, or health care providers to improve physical function or better manage illnesses that are precipitating falls. The products of this study can improve access to fall risk measures by deploying the new sensor system in any private house or apartment as well as senior centers, churches, or retail stores. In such settings, persons could go to an accessible area to perform the guided motions to be measured by the sensor network developed in this application. In just a few minutes, a person would have a reliable fall risk indicator to alert increasing fall risk. An automatic sensing system to detect falls has major potential in senior housing, long-term care settings, private community housing as well in acute care settings where falls are a major risk. After laboratory validation using 567 falls performed by trained theater stunt actors, we will deploy the prototype sensing system for two years of data collection in ten apartments of elders in an independent living setting to complete validation and field testing (again using 960 falls performed by stunt actors). This application integrates the specialized talents and perspectives of not only health care scientific disciplines (nursing, physical therapy, social work, medicine) but also electrical and computer engineering, computer science, and informatics. This application will be of interest to AHRQ and likely the Innovations and Emerging Areas Portfolio that "will foster and nurture ideas and projects that have potential to lead to highly innovative solutions that may lead to significant advances in healthcare practice..."
描述(由申请人提供):每三人中有一个年龄在65岁以上的人中,使跌倒成为老年人受伤和创伤住院的最常见原因,以及由于受伤而导致的主要死亡原因(CDC,2006年)。研究人员研究了跌倒,风险评估以及防止跌倒的干预措施。但是,迄今为止,他们的方法要求研究人员或临床医生完成对跌倒风险的多因素评估,并且研究对象保持跌倒的日志,磨损设备,以衡量可能表明跌倒或激活他们需要帮助的警报的位置变化。在我们目前的工作的基础上,我们建议验证和部署一种创新的技术方法,该方法自动检测何时发生跌倒或跌倒的风险在增加。受试者将不必按下按钮,拉绳或穿任何设备。这种新的“被动”方法使用家庭中的传感器可以彻底改变检测和防止跌倒以及测量跌落风险。通过检测跌倒或提高跌倒风险,这项新技术可以触发长者,家庭成员或医疗保健提供者改善身体机能或更好地管理正在促使跌倒的疾病的疾病。这项研究的产品可以通过在任何私人房屋或公寓以及高级中心,教堂或零售商店中部署新的传感器系统来改善跌落风险措施的机会。在这种情况下,人们可以前往可访问区域,以执行由本应用程序中开发的传感器网络衡量的指导动议。在短短几分钟内,一个人将具有可靠的跌倒风险指标,以提醒跌倒风险的增加。一种自动传感系统来检测跌倒,在高级住房,长期护理环境,私人社区住房以及跌倒是主要风险的急性护理环境中具有重要潜力。在实验室验证使用训练有素的剧院特技演员进行的567瀑布之后,我们将在独立的生活环境中在十个长者中部署两年的数据收集原型传感系统,以完成验证和现场测试(再次使用由特技演员执行的960个跌倒)。该应用程序不仅融合了医疗保健科学学科(护理,物理治疗,社会工作,医学)的专业人才和观点,还集成了电气和计算机工程,计算机科学和信息学。 AHRQ以及可能的创新和新兴 该领域的投资组合“将培养和培养有可能导致高度创新解决方案的思想和项目,这可能会导致医疗保健实践的重大进展……”

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARILYN J RANTZ其他文献

MARILYN J RANTZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARILYN J RANTZ', 18)}}的其他基金

Intelligent Sensor System for Early Illness Alerts in Senior Housing
用于老年住宅早期疾病警报的智能传感器系统
  • 批准号:
    8662807
  • 财政年份:
    2013
  • 资助金额:
    $ 49.76万
  • 项目类别:
Intelligent Sensor System for Early Illness Alerts in Senior Housing
用于老年住宅早期疾病警报的智能传感器系统
  • 批准号:
    8478491
  • 财政年份:
    2013
  • 资助金额:
    $ 49.76万
  • 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
  • 批准号:
    8281330
  • 财政年份:
    2009
  • 资助金额:
    $ 49.76万
  • 项目类别:
Technology to Automatically Detect Early Signs of Illness in Senior Housing
自动检测老年住宅早期疾病迹象的技术
  • 批准号:
    7914329
  • 财政年份:
    2009
  • 资助金额:
    $ 49.76万
  • 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
  • 批准号:
    7933742
  • 财政年份:
    2009
  • 资助金额:
    $ 49.76万
  • 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
  • 批准号:
    7785679
  • 财政年份:
    2009
  • 资助金额:
    $ 49.76万
  • 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
  • 批准号:
    6916924
  • 财政年份:
    2005
  • 资助金额:
    $ 49.76万
  • 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
  • 批准号:
    7193528
  • 财政年份:
    2005
  • 资助金额:
    $ 49.76万
  • 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
  • 批准号:
    7056802
  • 财政年份:
    2005
  • 资助金额:
    $ 49.76万
  • 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
  • 批准号:
    7572957
  • 财政年份:
    2005
  • 资助金额:
    $ 49.76万
  • 项目类别:

相似国自然基金

面向全自动地铁多职能人员的应急处置行为模式及人因失误研究
  • 批准号:
    52302438
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
众源图片支持的室内场景理解与三维地图自动构建研究
  • 批准号:
    41701445
  • 批准年份:
    2017
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动面向任务的自动地理数据库综合模型研究
  • 批准号:
    40771168
  • 批准年份:
    2007
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
有云条件下的基于拓扑特征的遥感卫星图像自动地标识别方法研究
  • 批准号:
    60702040
  • 批准年份:
    2007
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
  • 批准号:
    10268004
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
Clinical evaluation of a commercially viable machine learning algorithm to automatically detect shoulder muscle pathology
自动检测肩部肌肉病理的商业可行机器学习算法的临床评估
  • 批准号:
    10706901
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
  • 批准号:
    10495191
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
TrachAlarm: A novel, low-cost accessory to automatically detect and alert caregivers to tracheostomy tube decannulation
TrachAlarm:一种新颖的低成本配件,可自动检测气管切开插管并提醒护理人员
  • 批准号:
    10295975
  • 财政年份:
    2018
  • 资助金额:
    $ 49.76万
  • 项目类别:
TrachAlarm: A novel, low-cost accessory to automatically detect and alert caregivers to tracheostomy tube decannulation
TrachAlarm:一种新颖的低成本配件,可自动检测气管切开插管并提醒护理人员
  • 批准号:
    10266122
  • 财政年份:
    2018
  • 资助金额:
    $ 49.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了