Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing

自动检测跌倒并评估老年住宅跌倒风险的技术

基本信息

  • 批准号:
    8111672
  • 负责人:
  • 金额:
    $ 49.76万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-30 至 2013-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): One in every three people age 65 or older falls each year, making falls the most common cause of injuries and hospitalizations for trauma in older adults and the leading cause of death due to injury (CDC, 2006). Researchers have studied falls, fall risk assessment, and interventions to prevent falls. However, to date, their methods require that research staff or clinicians complete multi-factorial assessments of fall risk and that research subjects maintain logs of falls, wear devices that measure changes in positions that could indicate a fall or activate an alarm that they need assistance. Building on our current work, we propose to validate and deploy an innovative technological approach that automatically detects when falls have occurred or when the risk of falls is increasing. Subjects will not have to press buttons, pull cords or wear any devices. This new "passive" approach using sensors in the home could revolutionize detecting and preventing falls as well as measuring fall risk. By detecting falls or increasing fall risk early, this new technology can act as a trigger for elders, family members, or health care providers to improve physical function or better manage illnesses that are precipitating falls. The products of this study can improve access to fall risk measures by deploying the new sensor system in any private house or apartment as well as senior centers, churches, or retail stores. In such settings, persons could go to an accessible area to perform the guided motions to be measured by the sensor network developed in this application. In just a few minutes, a person would have a reliable fall risk indicator to alert increasing fall risk. An automatic sensing system to detect falls has major potential in senior housing, long-term care settings, private community housing as well in acute care settings where falls are a major risk. After laboratory validation using 567 falls performed by trained theater stunt actors, we will deploy the prototype sensing system for two years of data collection in ten apartments of elders in an independent living setting to complete validation and field testing (again using 960 falls performed by stunt actors). This application integrates the specialized talents and perspectives of not only health care scientific disciplines (nursing, physical therapy, social work, medicine) but also electrical and computer engineering, computer science, and informatics. This application will be of interest to AHRQ and likely the Innovations and Emerging Areas Portfolio that "will foster and nurture ideas and projects that have potential to lead to highly innovative solutions that may lead to significant advances in healthcare practice..."
描述(由申请人提供):每三个65岁或以上的人中就有一个每年福尔斯,这使得福尔斯成为老年人受伤和因创伤住院的最常见原因,也是受伤导致死亡的主要原因(CDC,2006)。研究人员研究了福尔斯、跌倒风险评估和预防福尔斯的干预措施。然而,迄今为止,他们的方法要求研究人员或临床医生完成跌倒风险的多因素评估,并且研究受试者保持福尔斯日志,佩戴测量可能指示跌倒的位置变化或激活他们需要帮助的警报的设备。基于我们目前的工作,我们建议验证和部署一种创新的技术方法,该方法可以自动检测何时发生福尔斯或何时福尔斯的风险正在增加。受试者无需按下按钮、拉绳或佩戴任何器械。这种在家中使用传感器的新“被动”方法可以彻底改变检测和预防福尔斯以及测量跌倒风险的方法。通过早期检测福尔斯或增加跌倒风险,这项新技术可以作为老年人、家庭成员或医疗保健提供者的触发器,以改善身体功能或更好地管理导致福尔斯跌倒的疾病。这项研究的产品可以通过在任何私人住宅或公寓以及老年中心,教堂或零售店部署新的传感器系统来改善跌倒风险措施。在这样的设置中,人可以去可访问的区域以执行将由本申请中开发的传感器网络测量的引导运动。在短短几分钟内,一个人将有一个可靠的跌倒风险指标,以警告不断增加的跌倒风险。检测福尔斯的自动感测系统在老年人住宅、长期护理环境、私人社区住宅以及福尔斯是主要风险的急性护理环境中具有很大的潜力。经过实验室验证,使用567福尔斯由训练有素的戏剧特技演员表演,我们将部署原型传感系统的数据收集两年的10个公寓的老人在一个独立的生活设置,以完成验证和现场测试(再次使用960福尔斯由特技演员表演)。该应用程序不仅整合了医疗保健科学学科(护理,物理治疗,社会工作,医学)的专业人才和观点,还整合了电气和计算机工程,计算机科学和信息学。这个应用程序将是感兴趣的AHRQ和可能的创新和新兴的 领域组合,“将促进和培育的想法和项目,有可能导致高度创新的解决方案,可能会导致医疗保健实践的重大进步. "

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARILYN J RANTZ其他文献

MARILYN J RANTZ的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARILYN J RANTZ', 18)}}的其他基金

Intelligent Sensor System for Early Illness Alerts in Senior Housing
用于老年住宅早期疾病警报的智能传感器系统
  • 批准号:
    8662807
  • 财政年份:
    2013
  • 资助金额:
    $ 49.76万
  • 项目类别:
Intelligent Sensor System for Early Illness Alerts in Senior Housing
用于老年住宅早期疾病警报的智能传感器系统
  • 批准号:
    8478491
  • 财政年份:
    2013
  • 资助金额:
    $ 49.76万
  • 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
  • 批准号:
    8281330
  • 财政年份:
    2009
  • 资助金额:
    $ 49.76万
  • 项目类别:
Technology to Automatically Detect Early Signs of Illness in Senior Housing
自动检测老年住宅早期疾病迹象的技术
  • 批准号:
    7914329
  • 财政年份:
    2009
  • 资助金额:
    $ 49.76万
  • 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
  • 批准号:
    7933742
  • 财政年份:
    2009
  • 资助金额:
    $ 49.76万
  • 项目类别:
Technology to Automatically Detect Falls and Assess Fall Risk in Senior Housing
自动检测跌倒并评估老年住宅跌倒风险的技术
  • 批准号:
    7785679
  • 财政年份:
    2009
  • 资助金额:
    $ 49.76万
  • 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
  • 批准号:
    6916924
  • 财政年份:
    2005
  • 资助金额:
    $ 49.76万
  • 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
  • 批准号:
    7193528
  • 财政年份:
    2005
  • 资助金额:
    $ 49.76万
  • 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
  • 批准号:
    7056802
  • 财政年份:
    2005
  • 资助金额:
    $ 49.76万
  • 项目类别:
Multilevel Intervention to Improve Nursing Home Outcomes
多层次干预改善疗养院的结果
  • 批准号:
    7572957
  • 财政年份:
    2005
  • 资助金额:
    $ 49.76万
  • 项目类别:

相似海外基金

ArchAI: Using AI to automatically detect archaeology on EO data
ArchAI:利用人工智能自动检测对地观测数据的考古学
  • 批准号:
    10047167
  • 财政年份:
    2022
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Collaborative R&D
The Application of Digital Forensics and Machine Learning to Automatically Detect and Flag Modified Online Terrorist Propaganda
应用数字取证和机器学习自动检测和标记经过修改的在线恐怖宣传
  • 批准号:
    2598763
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Studentship
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
  • 批准号:
    10268004
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
Clinical evaluation of a commercially viable machine learning algorithm to automatically detect shoulder muscle pathology
自动检测肩部肌肉病理的商业可行机器学习算法的临床评估
  • 批准号:
    10706901
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
Development of a commercially viable machine learning product to automatically detect rotator cuff muscle pathology
开发商业上可行的机器学习产品来自动检测肩袖肌肉病理
  • 批准号:
    10495191
  • 财政年份:
    2021
  • 资助金额:
    $ 49.76万
  • 项目类别:
Development of a software system to automatically detect and quantify foot collapse
开发自动检测和量化足部塌陷的软件系统
  • 批准号:
    2453254
  • 财政年份:
    2020
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Studentship
Using Natural Language Processing and Machine Learning techniques to automatically detect cyberbullying.
使用自然语言处理和机器学习技术自动检测网络欺凌。
  • 批准号:
    2253445
  • 财政年份:
    2019
  • 资助金额:
    $ 49.76万
  • 项目类别:
    Studentship
TrachAlarm: A novel, low-cost accessory to automatically detect and alert caregivers to tracheostomy tube decannulation
TrachAlarm:一种新颖的低成本配件,可自动检测气管切开插管并提醒护理人员
  • 批准号:
    10295975
  • 财政年份:
    2018
  • 资助金额:
    $ 49.76万
  • 项目类别:
TrachAlarm: A novel, low-cost accessory to automatically detect and alert caregivers to tracheostomy tube decannulation
TrachAlarm:一种新颖的低成本配件,可自动检测气管切开插管并提醒护理人员
  • 批准号:
    10266122
  • 财政年份:
    2018
  • 资助金额:
    $ 49.76万
  • 项目类别:
TrachAlarm: A novel, low-cost accessory to automatically detect and alert caregivers to tracheostomy tube decannulation
TrachAlarm:一种新颖的低成本配件,可自动检测气管切开插管并提醒护理人员
  • 批准号:
    10082153
  • 财政年份:
    2018
  • 资助金额:
    $ 49.76万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了