A novel 3D cell culture human uterine contractility assay for high-throughput scr

一种新型 3D 细胞培养人子宫收缩力测定,用于高通量 SCR

基本信息

  • 批准号:
    8781654
  • 负责人:
  • 金额:
    $ 19.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-22 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Several disorders in reproductive medicine are results of changes in smooth muscle contractile activity. Increased myometrial contraction can lead to preterm labor, which affects 12% of the US population. However, the mechanisms involved in the transition from uterine quiescence to contractility at the onset of labor are not well-known. As a result, the management of labor disorders such as preterm birth is poor, particularly tocolytic therapies, which could delay preterm labor, but have not been effectively proven and tested for this purpose. The slow progress in understanding myometrial contractility and tocolytic management of preterm labor can be attributed to the lack of faithful in vitro models of the myometrium, as well as the ability to efficiently screen tocolytic compounds in a high-throughput fashion. While in vivo models are used in the uterine contractility research, pronounced differences in how animals and humans give labor mean that pathological changes have different biological bases and responses to drugs. Beyond these intrinsic differences, animal models are time-consuming, costly, and ethically challenging. Alternatively, ex vivo human myometrial tissue are useful models for uterine contractility research. Yet, ex vivo models are not ideal for robust studies on uterine contractility research, as they suffer from ethical issues, sample inconsistencies, and scarcity. As a result, in vitro assays have been explored as cheaper and robust alternatives to study the efficacy of tocolytic substances to predict efficacy in humans, or as a compound screen before in vivo testing. The development of in vitro cell culture models and organ systems has greatly facilitated the study of gene expression and pathway regulation within human myometrial tissues, as well as identify and characterize target pathways. The success of these studies confirms the ability to study uterine contractility at the cellular level by examination of electrical conduction and protein expression. However, in general, in vitro cell culture models are limited by their accuracy, likely due to the fact that most in vitro testing is performed on two-dimensional (2D) glass or plastic surfaces, or organ bath systems that do not fully represent the native human myometrium environment. Specifically to uterine contractility research, while in vitro models allow for a myriad of metrics related to uterine activity to be monitored in a controlled environment, these models are prone to spontaneous activity involving both activating and spontaneous contractile mechanisms that require suppression of the activating mechanism to achieve consistency in results. Additionally, limitations still remain in 2D cell culture and in vitro uterine tissue models in studying tissue-lvel physiology and cellular pathways, respectively, resulting in data lacking context, detail, accuracy and mostly reproducibility. Given these limitations, this proposal looks toward three-dimensional (3D) models, which more accurately can represent the native tissue environment. Specifically, a recently explored assay, the BiO Assay, will be applied to contractility research as the C-BiO Assay. The basis of the C-BiO Assay is magnetic printing of cells. Cells are incubated with nontoxic magnetic nanoparticles that render the cells magnetic. Using ring-shaped magnets, the cells are then printed in 96-well plates into 3D rings, which close over time and at a rate that varies with compound concentration. The C-BiO Assay uses label-free metrics, so it does not require any reagents, dyes, or specialized equipment. Furthermore, data is gathered using a mobile device, which can be programmed to image whole plates at specific time points, avoiding the time-consuming imaging of individual wells under a microscope or reading plates on a plate reader, that is involved in 2D in vitro assays. Our hypothesis is that the C-BiO Assay will apply the benefits of 3D cell culture to an area of need, the lack of a faithful in vitro myometrial mode for contractility research, while being faster than other assay systems. In this Phase I proposal, the parameters of the C-BiO Assay will be optimized for high-throughput screening. Then, the assay will be compared to other 2D and 3D assays, and validated as a measure of smooth muscle contraction. This assay will integrate:  Capability to rapidly print 3D cell cultures with relevant extracellular matrix  Real-time and label-free quantification of ring closure, which correlates with cell function  Ability to investigate the basal cytotoxicity of particular compouns and their mechanisms of actions  Tools for high-throughput analysis that could significantly cut the time and cost of data collection The end result is an assay that mimics the myometrial structure and physiology, particularly smooth muscle contraction, and allows for high-throughput testing to efficiently screen tocolytic compounds for efficacy and toxicity. Aims Aim 1 - Optimization of the Magnetic Levitation and Printing of Myometrial 3D Cell Cultures for the C-BiO Assay Aim 2 - Validation of the 3D Myometrial C-BiO Assay.
描述(由申请人提供):生殖医学中的几种疾病是平滑肌收缩活动变化的结果。子宫肌肌收缩加剧可导致早产,这影响了12%的美国人口。然而,从子宫静止到分娩时收缩的机制尚不清楚。因此,对早产等劳动障碍的管理很差,特别是可延迟早产的抗胎压治疗,但尚未为此目的得到有效证明和测试。在了解子宫肌层收缩性和早产的妊娠管理方面进展缓慢,可归因于缺乏可靠的子宫肌层体外模型,以及以高通量方式有效筛选妊娠化合物的能力。虽然子宫收缩性研究采用体内模型,但动物和人类分娩方式的显著差异意味着病理变化具有不同的生物学基础和对药物的反应。除了这些内在差异之外,动物模型耗时、昂贵,而且在道德上具有挑战性。另外,离体人子宫肌组织是子宫收缩性研究的有用模型。然而,由于存在伦理问题、样本不一致和稀缺性,离体模型并不适合用于子宫收缩性研究。因此,已经探索了体外测定法作为更便宜和可靠的替代方法来研究促孕物质的功效,以预测其在人体内的功效,或作为体内试验前的复合筛选。体外细胞培养模型和器官系统的发展,极大地促进了人类肌组织内基因表达和通路调控的研究,以及靶通路的识别和表征。这些研究的成功证实了在细胞水平上通过检查电传导和蛋白质表达来研究子宫收缩能力的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Biana Godin其他文献

Biana Godin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Biana Godin', 18)}}的其他基金

Intranasal Delivery of Telomerase Reverse Transcriptase mRNA for Therapy ofTraumatic Brain Injury
鼻内递送端粒酶逆转录酶 mRNA 用于治疗创伤性脑损伤
  • 批准号:
    10602034
  • 财政年份:
    2022
  • 资助金额:
    $ 19.05万
  • 项目类别:
Development of Nanovectors to Prevent Placental Passage of a Tocolytic Agent
开发纳米载体以防止保胎剂通过胎盘
  • 批准号:
    9115196
  • 财政年份:
    2015
  • 资助金额:
    $ 19.05万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 19.05万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了