Development of Nanovectors to Prevent Placental Passage of a Tocolytic Agent
开发纳米载体以防止保胎剂通过胎盘
基本信息
- 批准号:9115196
- 负责人:
- 金额:$ 19.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:Activities of Daily LivingAddressAdverse effectsAdverse reactionsAffectAreaBindingBiodistributionBiologicalBirthBlood CirculationChargeChemicalsClinicalCommunicable DiseasesDevelopmentDiscipline of obstetricsDiseaseDrug Delivery SystemsDrug usageDuctus ArteriosusEvaluationFetusFigs - dietaryGoalsHealthHigh-Risk PregnancyHumanIndomethacinLeadLipidsLiposomesLocationMeasuresModelingModificationMusMyometrialNanotechnologyNeonatalNeonatal MortalityOligohydramniosOrganOxytocin ReceptorPeptidesPerinatal ExposurePharmaceutical PreparationsPlacentaPregnancyPregnant UterusPremature BirthPremature LaborPreventionPropertyResearchResearch PersonnelRodentSiteSurfaceSystemTestingTherapeuticTissuesTocolytic AgentsToxic effectUnited StatesUterine ContractionUterusbasechemical propertydesignfetalfetal bloodimprovedin vivointerestmouse modelmyometriumnanomedicinenanoscalenanovectorneonatal morbiditynovelparticlepregnantprematurepreventtargeted deliverytumoruterine contractility
项目摘要
DESCRIPTION (provided by applicant): Preterm birth affects up to 12% of pregnancies in the United States and is a major contributor to neonatal morbidity and mortality. The treatment of preterm labor includes tocolytic drugs, such as indomethacin, to stop uterine contractions. Although indomethacin is effective in reducing uterine contractions, the primary clinical limitatio with prolonged use of indomethacin is its ability to cross the placenta leading to adverse fetal and neonatal effects such as premature closure of the ductus arteriosus and oligohydramnios. Nanomedicine is an emerging clinical field with one of the main goals of vectoring the drugs preferentially to the disease loci and, thus, increasing the efficacy and reducing associated toxicities and adverse reactions. Nanovectors are nanoscale particles or integrated systems with a variety of physico-chemical and biological properties, such as size, charge and targeting moieties, that can be customized based on the intended use. These properties allow the rational design of the nanovectors to preferentially deliver a drug to the tissue of interest and prevent it distribution to unwanted locations. In this proposal, we will use liposomes, lipid-based nanovectors, currently used in the clinical setting for tumor and infectious disease therapy. Although significant progress has been made with the use of nanomedicine in other clinical areas, the applications of nanovectors in obstetrics are underexplored. Our previous studies in pregnant rodents have shown that transplacental passage can be prevented through modifications of the physico-chemical properties of the nanovectors. Thus, nanovectors represent an uncharted therapeutic opportunity to address the primary limitation of using indomethacin in pregnancy by reducing placental passage of the drug to the fetus. In this exploratory proposal, we aim to determine the ability of a drug-carrying nanovector to direct the delivery of indomethacin to the pregnant uterus and inhibit myometrial uterine contractility. For this purpose, liposomes, loaded with indomethacin will be designed with physicochemical properties to retain in the maternal circulation and enhance the concentration in the uterus. Additionally, we will use oxytocin receptor antagonist peptide on the liposome's surface to allow binding to the oxytocin receptor expressed on the pregnant myometrium. We will use our established ex vivo human model of myometrial contractility to measure the functional ability of the indomethacin carrying liposomes to inhibit uterine contractility. We will also determine the efficacy of the indomethacin carrying liposomes in preventing preterm birth while reducing fetal exposure. Our established in vivo preterm pregnant mouse model will be used to test the ability of the indomethacin carrying liposomes to prevent preterm birth and fetal adverse effects. In this novel, exploratory proposal, carried out by a multi-disciplinary team of investigators, we will extend the benefits of nanomedicine to the field of obstetrics. Beyond the immediate goals of the current project, this study will pave the ground for the new paradigm-shifting direction in the
treatment of high risk pregnancies.
描述(由申请人提供):早产影响美国高达12%的妊娠,是新生儿发病率和死亡率的主要原因。早产的治疗包括宫缩抑制药物,如吲哚美辛,以停止子宫收缩。尽管消炎痛可有效减少子宫收缩,但长期使用消炎痛的主要临床限制是其穿过胎盘的能力,导致对胎儿和新生儿的不利影响,例如动脉导管过早闭合和羊水过少。纳米医学是一个新兴的临床领域,其主要目标之一是将药物优先导向疾病位点,从而提高疗效并减少相关毒性和不良反应。纳米载体是具有多种物理化学和生物学性质(例如大小、电荷和靶向部分)的纳米级颗粒或集成系统,其可以基于预期用途定制。这些性质允许合理设计纳米载体,以优先将药物递送到感兴趣的组织,并防止其分布到不需要的位置。在这项提案中,我们将使用脂质体,基于脂质的纳米载体,目前用于肿瘤和感染性疾病治疗的临床环境。虽然在其他临床领域使用纳米医学已经取得了重大进展,但纳米载体在产科中的应用尚未得到充分探索。我们以前在怀孕啮齿动物中的研究表明,可以通过修改纳米载体的理化性质来防止经胎盘通过。因此,纳米载体代表了一种未知的治疗机会,通过减少药物通过胎盘到达胎儿来解决妊娠中使用吲哚美辛的主要限制。在这个探索性的建议中,我们的目的是确定携带药物的纳米载体直接将吲哚美辛递送到妊娠子宫并抑制子宫肌层子宫收缩的能力。为此,将设计具有物理化学性质的负载吲哚美辛的脂质体,以保留在母体循环中并提高子宫中的浓度。此外,我们将在脂质体表面使用催产素受体拮抗剂肽,以允许结合妊娠子宫肌层上表达的催产素受体。我们将使用我们建立的子宫肌层收缩性的离体人类模型来测量携带吲哚美辛的脂质体抑制子宫收缩性的功能能力。我们还将确定携带吲哚美辛的脂质体在预防早产同时减少胎儿暴露方面的功效。我们建立的体内早产妊娠小鼠模型将用于测试携带吲哚美辛的脂质体预防早产和胎儿不良反应的能力。在这个由多学科研究人员组成的团队进行的新颖的探索性提案中,我们将把纳米医学的好处扩展到产科领域。除了当前项目的直接目标之外,这项研究还将为未来新的范式转变方向奠定基础
治疗高危妊娠。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Biana Godin其他文献
Biana Godin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Biana Godin', 18)}}的其他基金
Intranasal Delivery of Telomerase Reverse Transcriptase mRNA for Therapy ofTraumatic Brain Injury
鼻内递送端粒酶逆转录酶 mRNA 用于治疗创伤性脑损伤
- 批准号:
10602034 - 财政年份:2022
- 资助金额:
$ 19.31万 - 项目类别:
A novel 3D cell culture human uterine contractility assay for high-throughput scr
一种新型 3D 细胞培养人子宫收缩力测定,用于高通量 SCR
- 批准号:
8781654 - 财政年份:2014
- 资助金额:
$ 19.31万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.31万 - 项目类别:
Research Grant