A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
基本信息
- 批准号:8656620
- 负责人:
- 金额:$ 39.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAgingAlgorithmsAnatomyAppearanceClinicalComplexDataDefectDeformityDevelopmentElementsFaceFigs - dietaryForensic SciencesGoalsGrowthHistocompatibility TestingImaginationIndividualLaboratoriesLearningLeftMachine LearningMapsMechanicsMethodsModelingOperative Surgical ProceduresOrthodonticsOsteotomyOutcomePatient EducationPatientsPlastic Surgical ProceduresPlasticsPostoperative PeriodPropertyReconstructive Surgical ProceduresReportingResidual stateRiskRunningSeveritiesSimulateSkeletonSpeedStatistical ModelsSurgeonSystemTechniquesTestingThickTimeTissuesTrainingVariantVisualbalance testingbasebonecraniomaxillofacialexperienceimaging informaticsimprovedimproved functioninginnovationmeetingsnovelopen sourcepreventpsychologicpublic health relevancereconstructionsimulationskeletalskeletal surgerysoft tissuesystem architecturevirtual
项目摘要
DESCRIPTION (provided by applicant): The number of patients suffering from craniomaxillofacial (CMF) deformities and requiring surgical correction is escalating. CMF deformities may involve skeleton, overlying soft-tissues, or the both. Patients with CMF deformities often have psychological problems. The goal of CMF surgery is to reconstruct a normal facial appearance and function, and the outcome of the surgery is judged as such. The current problem is that we do not have a reliable way of simulating the soft-tissue-change following skeletal reconstruction. In treating patients with isolated skeletal defects, the current
practice is to normalize the skeleton, hoping for optimal facial appearance. However, because the thickness and contour of the soft-tissue envelope varies from patient to patient, this approach is not reliable. The problem is even bigger in patients with composite defects. For example, in the scenario of a patient with a skeletal deformity and a mild soft-tissue defect, a surgeon would have to know, before surgery, how to overcorrect the skeleton to camouflage the soft-tissue defect. But, this information can only be attained by having an accurate planning system to simulate soft-tissue changes. In addition, from patient's perspective, the final facial appearance is the most apparent to them. Therefore, it is extremely important, for both doctors and patients, to accurately simulate soft-tissue-deformation. Simulation methods must be accurate and fast. Attaining both is difficult because these attributes are inversely related, the more accurate the model, the longer it takes to prepare and run. Among the most effective, they are empirical-based model, mass spring model, finite element model, and mass tensor model. Unfortunately they are either too inaccurate or too slow, and clinically unacceptable. Our hypothesis is that facial soft-tissue changes following virtual osteotomy can be accurately simulated by our innovative approach using an anatomically detailed modeling and mapping routine, along with statistical modeling technique. To test our hypothesis, we propose to develop an open source novel imaging informatics platform, eFace system, to accurately simulate soft-tissue-change following virtual osteotomies, and thus to significantly improve the outcomes of patients undergoing facial reconstruction. This approach can not only maintain the integrity of complex facial anatomy to accurately simulate the facial soft tissue deformation, but also significantly improve the computational efficiency in order to fit the requirement for clinical use This project presents an innovative approach to model the facial soft-tissue deformation. If successful, it will allow accurate simulation of soft-tissue changes after virtual osteotomy. Patients will also be able to foresee the postoperative face preoperatively (patient education) and regain their psychological confidence. Finally, eFace will have significant impact and applications in orthodontics, plastic surgery, general surgery, growth/aging prediction, and forensic science.
描述(申请人提供):患有颅颌面(CMF)畸形并需要手术矫正的患者数量正在上升。CMF畸形可累及骨骼、覆盖软组织或两者兼而有之。CMF畸形患者通常有心理问题。CMF手术的目的是重建正常的面部外观和功能,并以此判断手术的结果。目前的问题是,我们没有一种可靠的方法来模拟骨骼重建后的软组织变化。在治疗孤立性骨缺损患者时,目前
练习是使骨骼正常化,希望获得最佳的面部外观。然而,由于软组织包膜的厚度和轮廓因患者而异,这种方法是不可靠的。在有复合材料缺陷的患者中,这个问题甚至更大。例如,在骨骼畸形和轻微软组织缺陷的情况下,外科医生必须在手术前知道如何过度矫正骨骼以掩盖软组织缺陷。但是,只有拥有一个准确的计划系统来模拟软组织变化,才能获得这些信息。此外,从患者的角度来看,最终的面部外观对他们来说是最明显的。因此,对于医生和患者来说,准确地模拟软组织变形是非常重要的。仿真方法必须准确、快速。两者都很难达到,因为这些属性是反向相关的,模型越准确,准备和运行的时间就越长。其中最有效的是基于经验的模型、质量弹簧模型、有限元模型和质量张量模型。不幸的是,它们要么太不准确,要么太慢,在临床上是不可接受的。我们的假设是,虚拟截骨术后面部软组织的变化可以通过我们的创新方法,使用解剖学上详细的建模和映射程序,以及统计建模技术来准确模拟。为了验证我们的假设,我们建议开发一个开源的新型成像信息学平台eFace System,以准确模拟虚拟截骨术后软组织的变化,从而显著改善接受面部重建的患者的预后。该方法不仅能够保持面部复杂解剖结构的完整性,准确模拟面部软组织的变形,而且显著提高了计算效率,以适应临床应用的需要。如果成功,它将能够准确模拟虚拟截骨术后软组织的变化。患者还将能够在术前预见术后的面孔(患者教育),并恢复他们的心理信心。最后,eFace将在正畸、整形外科、普通外科、生长/衰老预测和法医科学中产生重大影响和应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James J Xia其他文献
James J Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James J Xia', 18)}}的其他基金
Outcome-Driven Approach to Minimize the Risks of Facial Distortion Following CMF Surgery
以结果为导向的方法,最大限度地降低 CMF 手术后面部变形的风险
- 批准号:
10225298 - 财政年份:2013
- 资助金额:
$ 39.35万 - 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
- 批准号:
8439794 - 财政年份:2013
- 资助金额:
$ 39.35万 - 项目类别:
Outcome-Driven Approach to Minimize the Risks of Facial Distortion Following CMF Surgery
以结果为导向的方法,最大限度地降低 CMF 手术后面部变形的风险
- 批准号:
9895393 - 财政年份:2013
- 资助金额:
$ 39.35万 - 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
- 批准号:
9233988 - 财政年份:2013
- 资助金额:
$ 39.35万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
8521242 - 财政年份:2011
- 资助金额:
$ 39.35万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
8512191 - 财政年份:2011
- 资助金额:
$ 39.35万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
8329617 - 财政年份:2011
- 资助金额:
$ 39.35万 - 项目类别:
A Novel Imaging Analysis Platform for Patients with Craniomaxillofacial Deformities
针对颅颌面畸形患者的新型影像分析平台
- 批准号:
9417942 - 财政年份:2011
- 资助金额:
$ 39.35万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
7948954 - 财政年份:2011
- 资助金额:
$ 39.35万 - 项目类别:
Computer Surgical Simulation for Craniofacial Surgery
颅面手术的计算机手术模拟
- 批准号:
7154276 - 财政年份:2004
- 资助金额:
$ 39.35万 - 项目类别:
相似海外基金
Interplay between Aging and Tubulin Posttranslational Modifications
衰老与微管蛋白翻译后修饰之间的相互作用
- 批准号:
24K18114 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
EMNANDI: Advanced Characterisation and Aging of Compostable Bioplastics for Automotive Applications
EMNANDI:汽车应用可堆肥生物塑料的高级表征和老化
- 批准号:
10089306 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Collaborative R&D
The Canadian Brain Health and Cognitive Impairment in Aging Knowledge Mobilization Hub: Sharing Stories of Research
加拿大大脑健康和老龄化认知障碍知识动员中心:分享研究故事
- 批准号:
498288 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Operating Grants
Baycrest Academy for Research and Education Summer Program in Aging (SPA): Strengthening research competencies, cultivating empathy, building interprofessional networks and skills, and fostering innovation among the next generation of healthcare workers t
Baycrest Academy for Research and Education Summer Program in Aging (SPA):加强研究能力,培养同理心,建立跨专业网络和技能,并促进下一代医疗保健工作者的创新
- 批准号:
498310 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Operating Grants
関節リウマチ患者のSuccessful Agingに向けたフレイル予防対策の構築
类风湿性关节炎患者成功老龄化的衰弱预防措施的建立
- 批准号:
23K20339 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Life course pathways in healthy aging and wellbeing
健康老龄化和福祉的生命历程路径
- 批准号:
2740736 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Studentship
NSF PRFB FY 2023: Connecting physiological and cellular aging to individual quality in a long-lived free-living mammal.
NSF PRFB 2023 财年:将生理和细胞衰老与长寿自由生活哺乳动物的个体质量联系起来。
- 批准号:
2305890 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Fellowship Award
I-Corps: Aging in Place with Artificial Intelligence-Powered Augmented Reality
I-Corps:利用人工智能驱动的增强现实实现原地老龄化
- 批准号:
2406592 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Standard Grant
McGill-MOBILHUB: Mobilization Hub for Knowledge, Education, and Artificial Intelligence/Deep Learning on Brain Health and Cognitive Impairment in Aging.
McGill-MOBILHUB:脑健康和衰老认知障碍的知识、教育和人工智能/深度学习动员中心。
- 批准号:
498278 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Operating Grants
Welfare Enhancing Fiscal and Monetary Policies for Aging Societies
促进老龄化社会福利的财政和货币政策
- 批准号:
24K04938 - 财政年份:2024
- 资助金额:
$ 39.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




