Outcome-Driven Approach to Minimize the Risks of Facial Distortion Following CMF Surgery
以结果为导向的方法,最大限度地降低 CMF 手术后面部变形的风险
基本信息
- 批准号:10225298
- 负责人:
- 金额:$ 61.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:3-Dimensional3D PrintAchievementAlgorithmsAmericanAnatomyAppearanceBiomechanicsClinicalComplexComputer AssistedComputer softwareCongenital AbnormalityDatabasesDefectDeformityDevelopmentEarElementsEnsureFaceGenerationsGoalsHeadHourIndividualJawLaboratoriesLearningLip structureLocationMachine LearningMandibleMaxillaMethodsModelingMotivationMovementOperative Surgical ProceduresOutcomePatient CarePatientsPlanning TechniquesPostoperative PeriodPrecision therapeuticsProcessProgress ReportsPsyche structureQuality of CareReconstructive Surgical ProceduresReportingResidual stateRunningShapesSkeletonSlideStructureSurgeonSyndromeSystemTechniquesTestingTimeTraumaTreatment outcomeValidationWorkbaseboneclinical practicecraniomaxillofacialdesignimprovedlearning networkorthognathicpersonalized carepreventpsychologicrisk minimizationskeletalsoft tissuesuccesssurgery outcometreatment planningvirtual surgery
项目摘要
Abstract:
Our main clinical motivation of this project is to provide personalized precision care to patients with
jaw (both maxilla and mandible) deformities by significantly improving surgical planning method. The number
of patients suffering from jaw deformities is escalating each year.
Orthognathic surgery is a main surgical procedure to treat jaw deformities by repositioning bony segments
of the jaws. The ultimate outcomes of orthognathic surgery are judged by the final facial appearance. Although
the facial soft tissues are not directly operated on, the face changes “automatically” following the bony changes.
Orthognathic surgery requires extensive surgical planning. While we can accurately plan the bony movements
and transfer it to the patient during the surgery using computer-aided surgical simulation (CASS) and 3D printing,
surgeons are still unable to practically predict the facial changes during the surgical planning, and just
hope that a postoperative normal face will be “automatically” restored. However, this “mental-clue”
approach is not reliable because the facial change does not exactly follow bony change. The problem is even
bigger in patients with composite defects. For example, if a patient has a skeletal deformity and mild facial defect,
a surgeon must know, before surgery, how to overcorrect the skeleton to camouflage the soft-tissue defect. But
this information can only be attained by accurate method to predict facial changes. In addition, from patient’s
perspective, the final facial appearance is great concern to them. Therefore, it is extremely important, for both
doctors and patients, to accurately predict facial changes.
In the previous project period, we have made significant achievements in predicting facial changes
following bony movements using finite element (FE) method. However, this approach still requires a considerable
amount of time to prepare FE models. In addition, rather than determining the ultimate surgical outcome (the
postoperative facial appearance) first, the current method is still to predict the facial change passively following
the bony surgery. These hurdles greatly prevent surgeons from practically using it in the clinical setting.
Our hypothesis is that a personalized precision treatment outcome can only be achieved if surgeons are
able to determine the final treatment outcome, a desired postoperative face, before planning the bony surgery.
To test our hypothesis, we propose to integrate outcome-driven and machine learning-based techniques together
to first estimate a desired postoperative face, and then plan the bony surgery.
The proposed project will have a significant clinical impact on improving patient care quality. It will enable
clinicians to develop an optimal surgical plan based on both facial and bony information, on-the-fly, using a single
software in their routine clinical practice. It will also revolutionize the surgical planning technique using outcome-
driven approach, i.e., to first estimate a desired postoperative face and then plan the bony surgery.
摘要:
我们这个项目的主要临床动机是为患者提供个性化的精确护理,
颌骨(包括上颌骨和下颌骨)畸形,通过显着改善手术计划方法。数量
患颌骨畸形的患者人数每年都在上升。
颌外科是通过骨段复位来治疗颌骨畸形的主要手术方式
的下巴。正颌外科手术的最终结果是由最终的面部外观来判断的。虽然
不直接对面部软组织进行手术,面部随骨骼变化而“自动”变化。
颌外科手术需要广泛的手术计划。虽然我们可以精确地计划骨骼的运动
并在手术过程中使用计算机辅助手术模拟(卡斯)和3D打印将其转移到患者身上,
外科医生仍然无法在手术计划期间实际预测面部变化,
希望术后能“自动”恢复正常面容。然而,这条“精神线索”
这种方法不可靠,因为面部变化并不完全跟随骨骼变化。问题是,
复合缺陷患者的血压更高。例如,如果患者有骨骼畸形和轻度面部缺陷,
外科医生在手术前必须知道如何过度矫正骨骼以掩盖软组织缺陷。但
这些信息只有通过准确的方法来预测面部变化才能获得。此外,患者的
从角度来看,最后的面部外观是他们非常关心的。因此,这一点非常重要,因为
医生和病人,以准确地预测面部变化。
在上一个项目期间,我们在预测面部变化方面取得了重大成就
使用有限元(FE)方法跟踪骨骼运动。然而,这种方法仍然需要相当大的
准备FE模型的时间。此外,不是决定最终的手术结果(
首先,目前的方法仍然是被动地预测面部变化,
骨骼手术这些障碍极大地阻碍了外科医生在临床环境中实际使用它。
我们的假设是,个性化的精确治疗结果只能在外科医生
能够在计划骨外科手术之前确定最终的治疗结果,期望的术后面部。
为了验证我们的假设,我们建议将结果驱动和基于机器学习的技术整合在一起
首先估计期望的术后面部,然后计划骨手术。
拟议的项目将对提高病人护理质量产生重大的临床影响。它将使
临床医生根据面部和骨骼信息,使用单个
软件在日常临床实践中。它还将彻底改变手术计划技术,
驱动方法,即,首先估计所需的术后面部,然后计划骨科手术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James J Xia其他文献
James J Xia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James J Xia', 18)}}的其他基金
Outcome-Driven Approach to Minimize the Risks of Facial Distortion Following CMF Surgery
以结果为导向的方法,最大限度地降低 CMF 手术后面部变形的风险
- 批准号:
9895393 - 财政年份:2013
- 资助金额:
$ 61.66万 - 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
- 批准号:
8439794 - 财政年份:2013
- 资助金额:
$ 61.66万 - 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
- 批准号:
8656620 - 财政年份:2013
- 资助金额:
$ 61.66万 - 项目类别:
A Novel eFace System to Prevent the Risks of Facial Distortion after CMF Surgery
新型 eFace 系统可预防 CMF 手术后面部变形的风险
- 批准号:
9233988 - 财政年份:2013
- 资助金额:
$ 61.66万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
8521242 - 财政年份:2011
- 资助金额:
$ 61.66万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
8512191 - 财政年份:2011
- 资助金额:
$ 61.66万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
8329617 - 财政年份:2011
- 资助金额:
$ 61.66万 - 项目类别:
A Novel Imaging Analysis Platform for Patients with Craniomaxillofacial Deformities
针对颅颌面畸形患者的新型影像分析平台
- 批准号:
9417942 - 财政年份:2011
- 资助金额:
$ 61.66万 - 项目类别:
A Novel Imaging Informatics Platform for Craniomaxillofacial Surgery
颅颌面外科新型影像信息学平台
- 批准号:
7948954 - 财政年份:2011
- 资助金额:
$ 61.66万 - 项目类别:
Computer Surgical Simulation for Craniofacial Surgery
颅面手术的计算机手术模拟
- 批准号:
7154276 - 财政年份:2004
- 资助金额:
$ 61.66万 - 项目类别:
相似海外基金
Study on the use of 3D print models to improve understanding of geomorphic processes
研究使用 3D 打印模型来提高对地貌过程的理解
- 批准号:
22K13777 - 财政年份:2022
- 资助金额:
$ 61.66万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
3D print-on-demand technology for personalised medicines at the point of care
用于护理点个性化药物的 3D 按需打印技术
- 批准号:
10045111 - 财政年份:2022
- 资助金额:
$ 61.66万 - 项目类别:
Grant for R&D
Regenerative cooling optimisation in 3D-print rocket nozzles
3D 打印火箭喷嘴的再生冷却优化
- 批准号:
2749141 - 财政年份:2022
- 资助金额:
$ 61.66万 - 项目类别:
Studentship
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2021
- 资助金额:
$ 61.66万 - 项目类别:
College - University Idea to Innovation Grants
Development of a New Powder Mix and Process Plan to 3D Print Ductile Iron Parts
开发用于 3D 打印球墨铸铁零件的新粉末混合物和工艺计划
- 批准号:
548945-2019 - 财政年份:2020
- 资助金额:
$ 61.66万 - 项目类别:
College - University Idea to Innovation Grants
Administrative Supplement for Equipment: 6-axis Positioner to Improve 3D Print Quality and Print Size
设备管理补充:用于提高 3D 打印质量和打印尺寸的 6 轴定位器
- 批准号:
10801667 - 财政年份:2019
- 资助金额:
$ 61.66万 - 项目类别:
SBIR Phase II: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第二阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1738138 - 财政年份:2017
- 资助金额:
$ 61.66万 - 项目类别:
Standard Grant
Development of "artificial muscle' ink for 3D print of microrobots
开发用于微型机器人3D打印的“人造肌肉”墨水
- 批准号:
17K18852 - 财政年份:2017
- 资助金额:
$ 61.66万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
I-Corps: Nanochon, a Commercial Venture to 3D Print Regenerative Implants for Joint Reconstruction
I-Corps:Nanochon,一家商业企业,致力于 3D 打印再生植入物进行关节重建
- 批准号:
1612567 - 财政年份:2016
- 资助金额:
$ 61.66万 - 项目类别:
Standard Grant
SBIR Phase I: Pellet based 3D print extrusion process for shoe manufacturing
SBIR 第一阶段:用于制鞋的基于颗粒的 3D 打印挤出工艺
- 批准号:
1621732 - 财政年份:2016
- 资助金额:
$ 61.66万 - 项目类别:
Standard Grant














{{item.name}}会员




