Chloro-Organic Degradation by Polymer Membrane Immobilized Iron-Based Particle Sy
聚合物膜固定铁基颗粒系统降解氯有机物
基本信息
- 批准号:8649942
- 负责人:
- 金额:$ 30.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAdsorptionAftercareAttentionBenignBiological SciencesCarbonChemicalsChemistryChlorineCollaborationsDevelopmentDiffusionDrug Metabolic DetoxicationEngineeringEnvironmentEnvironmental HealthFree RadicalsFundingGenerationsHealthHeatingHigh temperature of physical objectHumanHydrogen PeroxideHydroxyl RadicalIndividualInflammatoryIronKentuckyKnowledgeLaboratoriesLaboratory ResearchLeadLigandsManufacturer NameMedicalMembraneMetalsMethodsModelingMono-SNatureOutcome StudyPalladiumPathway interactionsPhasePlantsPoisonPolychlorinated BiphenylsPolymersProductionPublic HealthReactionRelative (related person)ResearchRiskRisk ManagementScienceScientistSiteSoilSolutionsSolventsSourceStructureSuperfundSystemTechniquesTechnologyTemperatureTestingToxic effectToxicity TestsTranslational ResearchTrichloroethyleneUnited States Environmental Protection AgencyVinyl ChlorideWaterWorkbasechemical stabilitycost effectivedechlorinationdemineralizationdesigndrinkingdrinking waterglobal environmenthazardinnovationiron oxidemetal oxidemicrobialnanoparticlenanoscalenanosizednanostructurednovelnutritionoxidationparticlepollutantpreventremediationscaffoldsensorsuperfund chemicalsuperfund sitetreatment strategy
项目摘要
PROJECT SUMMARY (Project 5 - Bhattacharyya, Ormsbee)
Due to their relative chemical stability and ubiquitous nature, chlorinated organic compounds such as
polychlorinated biphenyls (PCBs) and trichloroethylene (TCE) continue to pose both remediation challenges and
human health risks. At many Superfund sites, past remediation efforts using traditional treatment strategies (e.g.,
reactive barriers, six phase heating, etc.) have proven to be highly costly and largely ineffective. Alternative
strategies include both reductive and oxidative pathways for chloro-organic degradation to non-toxic
compounds. The development of nanosized iron-based materials has brought important and promising
techniques into the field of environmental remediation. In recent years, zero-valent nanoscale metal (especially
iron) particles have attracted growing attention in groundwater remediation of chlorinated solvents. For more
rapid and complete reductive dechlorination, a second metal is often added, resulting in bimetallic nanoparticles.
In the past, utilization of such approaches at actual Superfund sites has been limited due to concerns about
particle agglomeration or release into the environment. Project 5 will address the need for targeted remediation
strategies by developing integrated, cost-effective technologies which incorporate both reductive and oxidative
strategies in order to allow the complete remediation of chlorinated organic compounds without the production of
toxic byproducts Three specific aims are to: 1) create a porous, common polymer membrane immobilized
platform for synthesis of reactive and stable iron-based nanoparticles using environmentally safe approaches to
prevent aggregation and loss of particles; 2) embed immobilized nanoparticles in responsive membrane domain
to allow highly effective PCB and TCE dechlorination by both reductive and oxidative approaches; 3) determine
whether PCB demineralization with reduction by bimetallic (iron and palladium) nanoparticles as a first step,
followed by oxidation with iron oxide nanoparticles immobilized in polymer membrane domain, will eliminate the
formation of toxic chlorine-substituted intermediates, as verified by toxicity tests. To accomplish the aims, a
polymer/ membrane platform will be developed in both lab scale and full-scale for environmentally benign
nanostructured iron synthesis, and individual and combined technology strategies will be established to reduce
the toxicity of chloro-organics (selected PCBs and chloroethylenes). The proposed approach should address the
agglomeration and toxicity concerns associated with the use of bimetallic nanoparticles and allow for the
complete breakdown of chlorinated organic compounds to nontoxic and biodegradable intermediates. The
project will include collaborations with the U.S. Environmental Protection Agency's (EPA's) National Risk
Management Research Laboratory focused on nanoparticle synthesis and characterization using EPA facilities.
As in the past, the project will work with diverse primary stakeholders at state and federal levels to implement the
developed technologies at the Paducah Gaseous Diffusion Plant, Kentucky largest Superfund site.
项目摘要(项目5 -Bhattacharyya,Ormsbee)
由于它们的相对化学稳定性和无处不在的性质,氯有机化合物,例如
多氯联苯(PCB)和三氯乙烯(TCE)继续构成补救挑战,并且
人类健康风险。在许多超级基金地点,过去使用传统治疗策略(例如,
事实证明,反应性屏障,六个相供暖等)已被证明高昂且在很大程度上无效。选择
策略包括氯 - 有机降解为无毒的还原性和氧化途径
化合物。纳米基材料的开发带来了重要而有希望的
进入环境修复领域的技术。近年来,零价纳米级金属(尤其是
铁)颗粒吸引了越来越多的氯化溶剂的地下水修复。更多
快速而完全的还原脱氯,通常会添加第二种金属,从而导致双金属纳米颗粒。
过去,由于担心
粒子聚集或释放到环境中。项目5将满足目标补救的需求
通过开发综合,具有成本效益的技术来融合还原性和氧化的策略
策略以允许对氯化有机化合物进行完全修复,而无需产生
有毒副产品三个特定的目的是:1)创建一个固定的多孔,常见的聚合物膜
使用环境安全的方法合成反应性和稳定的基于铁的纳米颗粒的平台
防止聚集和损失颗粒; 2)将固定的纳米颗粒嵌入响应膜结构域中
通过还原和氧化方法允许高效的PCB和TCE脱氯。 3)确定
在第一步
然后用固定在聚合物膜结构域中的氧化铁纳米颗粒氧化将消除
通过毒性测试证实,有毒氯取代的中间体的形成。为了实现目标,
聚合物/膜平台将以实验室规模和全尺度开发,以供环境良性
将建立纳米结构的铁合成以及个人和组合的技术策略以减少
氯化物质的毒性(选定的PCB和氯乙烯)。拟议的方法应解决
与使用双金属纳米颗粒有关的凝聚和毒性问题,并允许
将氯化有机化合物完全分解为无毒和可生物降解的中间体。这
项目将包括与美国环境保护署(EPA)国家风险的合作
管理研究实验室专注于使用EPA设施进行纳米颗粒的合成和表征。
与过去一样,该项目将与州和联邦一级的不同主要利益相关者合作,以实施
在肯塔基州最大的超级基金站点的帕迪卡气态扩散厂开发的技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dibakar Bhattacharyya其他文献
Dibakar Bhattacharyya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dibakar Bhattacharyya', 18)}}的其他基金
Chloro-Organic Degradation by Nanosized Metallic Systems
纳米金属系统降解氯有机物
- 批准号:
6932250 - 财政年份:2005
- 资助金额:
$ 30.56万 - 项目类别:
Responsive Membranes and Advanced Materials for Sensing and Remediation of Halo-organics
用于卤代有机物传感和修复的响应膜和先进材料
- 批准号:
10596288 - 财政年份:1997
- 资助金额:
$ 30.56万 - 项目类别:
Chloro-Organic Degradation by Polymer Membrane Immobilized Iron-Based Particle Sy
聚合物膜固定铁基颗粒系统降解氯有机物
- 批准号:
9459895 - 财政年份:
- 资助金额:
$ 30.56万 - 项目类别:
Chloro-Organic Degradation by Nanosized Metallic Systems and by Chelate Modified
纳米金属系统和螯合物改性的氯有机物降解
- 批准号:
7393805 - 财政年份:
- 资助金额:
$ 30.56万 - 项目类别:
Chloro-Organic Degradation by Polymer Membrane Immobilized Iron-Based Particle Sy
聚合物膜固定铁基颗粒系统降解氯有机物
- 批准号:
9045635 - 财政年份:
- 资助金额:
$ 30.56万 - 项目类别:
Project 7: Chloro-Organic Degradation by Nanosized Metallic Systems and by Chelat
项目 7:纳米金属系统和 Chelat 降解氯有机物
- 批准号:
7417303 - 财政年份:
- 资助金额:
$ 30.56万 - 项目类别:
Chloro-Organic Degradation by Nanosized Metallic Systems
纳米金属系统降解氯有机物
- 批准号:
7311930 - 财政年份:
- 资助金额:
$ 30.56万 - 项目类别:
相似国自然基金
MOFs超高效吸附PPCPs及光控再生:性能及机理研究
- 批准号:51878023
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
磁性层状硫属复合吸附剂的构筑及去除水中典型PPCPs的机制研究
- 批准号:51708535
- 批准年份:2017
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
静电辅助氢键对环境中PPCPs吸附行为的影响及作用机制
- 批准号:41703093
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
磁性光敏温敏水凝胶吸附剂对水中典型PPCPs的吸附/解吸行为表现及机制研究
- 批准号:51778256
- 批准年份:2017
- 资助金额:57.0 万元
- 项目类别:面上项目
典型PPCPs在垃圾填埋体系中的关键归趋过程研究
- 批准号:21777188
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
SBIR: In vivo validation and IND-enabling development of MM004, a bispecific inhaled immunotherapy for RSV and MPV
SBIR:MM004 的体内验证和 IND 开发,MM004 是一种针对 RSV 和 MPV 的双特异性吸入免疫疗法
- 批准号:
10157638 - 财政年份:2021
- 资助金额:
$ 30.56万 - 项目类别:
Multifunctional Ionic Liquid Application for Treatment of Peri-implant Diseases
多功能离子液体治疗种植体周围疾病的应用
- 批准号:
10530033 - 财政年份:2017
- 资助金额:
$ 30.56万 - 项目类别:
Bacteriophobic Coatings for Inhibition of Pathogenic Biofilms
用于抑制致病生物膜的抗菌涂层
- 批准号:
7461115 - 财政年份:2008
- 资助金额:
$ 30.56万 - 项目类别:
Nanoparticle Analysis of Enveloped Virus Entry Pathways
包膜病毒进入途径的纳米颗粒分析
- 批准号:
7856237 - 财政年份:2008
- 资助金额:
$ 30.56万 - 项目类别:
Bacteriophobic Coatings for Inhibition of Pathogenic Biofilms
用于抑制致病生物膜的抗菌涂层
- 批准号:
7577344 - 财政年份:2008
- 资助金额:
$ 30.56万 - 项目类别: