Chloro-Organic Degradation by Polymer Membrane Immobilized Iron-Based Particle Sy
聚合物膜固定铁基颗粒系统降解氯有机物
基本信息
- 批准号:9045635
- 负责人:
- 金额:$ 30.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAdsorptionAftercareAttentionBenignBiological SciencesCarbonChemicalsChemistryChlorineCollaborationsDevelopmentDiffusionDrug Metabolic DetoxicationEngineeringEnvironmentEnvironmental HealthFree RadicalsFundingGenerationsHealthHeatingHigh temperature of physical objectHumanHydrogen PeroxideHydroxyl RadicalIndividualInflammatoryIronKentuckyKnowledgeLaboratoriesLaboratory ResearchLeadLigandsManufacturer NameMedicalMembraneMetalsMethodsModelingMono-SNatureOutcome StudyPalladiumPathway interactionsPhasePlantsPoisonPolychlorinated BiphenylsPolymersProductionPublic HealthReactionResearchRiskRisk ManagementScienceScientistSiteSoilSolventsSourceStructureSuperfundSystemTechniquesTechnologyTemperatureTestingToxic effectToxicity TestsTranslational ResearchTrichloroethyleneUnited States Environmental Protection AgencyVinyl ChlorideWaterWorkbasechemical stabilitycontaminated watercost effectivedechlorinationdemineralizationdesigndrinkingdrinking waterglobal environmenthazardhydrodynamic flowinnovationiron oxidemetal oxidemicrobialnanoparticlenanoscalenanosizednanostructurednovelnutritionoxidationparticlepollutantpreventremediationscaffoldsensorsuperfund chemicalsuperfund sitetechnology validationtreatment strategy
项目摘要
PROJECT SUMMARY (Project 5 - Bhattacharyya, Ormsbee)
Due to their relative chemical stability and ubiquitous nature, chlorinated organic compounds such as
polychlorinated biphenyls (PCBs) and trichloroethylene (TCE) continue to pose both remediation challenges and
human health risks. At many Superfund sites, past remediation efforts using traditional treatment strategies (e.g.,
reactive barriers, six phase heating, etc.) have proven to be highly costly and largely ineffective. Alternative
strategies include both reductive and oxidative pathways for chloro-organic degradation to non-toxic
compounds. The development of nanosized iron-based materials has brought important and promising
techniques into the field of environmental remediation. In recent years, zero-valent nanoscale metal (especially
iron) particles have attracted growing attention in groundwater remediation of chlorinated solvents. For more
rapid and complete reductive dechlorination, a second metal is often added, resulting in bimetallic nanoparticles.
In the past, utilization of such approaches at actual Superfund sites has been limited due to concerns about
particle agglomeration or release into the environment. Project 5 will address the need for targeted remediation
strategies by developing integrated, cost-effective technologies which incorporate both reductive and oxidative
strategies in order to allow the complete remediation of chlorinated organic compounds without the production of
toxic byproducts Three specific aims are to: 1) create a porous, common polymer membrane immobilized
platform for synthesis of reactive and stable iron-based nanoparticles using environmentally safe approaches to
prevent aggregation and loss of particles; 2) embed immobilized nanoparticles in responsive membrane domain
to allow highly effective PCB and TCE dechlorination by both reductive and oxidative approaches; 3) determine
whether PCB demineralization with reduction by bimetallic (iron and palladium) nanoparticles as a first step,
followed by oxidation with iron oxide nanoparticles immobilized in polymer membrane domain, will eliminate the
formation of toxic chlorine-substituted intermediates, as verified by toxicity tests. To accomplish the aims, a
polymer/ membrane platform will be developed in both lab scale and full-scale for environmentally benign
nanostructured iron synthesis, and individual and combined technology strategies will be established to reduce
the toxicity of chloro-organics (selected PCBs and chloroethylenes). The proposed approach should address the
agglomeration and toxicity concerns associated with the use of bimetallic nanoparticles and allow for the
complete breakdown of chlorinated organic compounds to nontoxic and biodegradable intermediates. The
project will include collaborations with the U.S. Environmental Protection Agency's (EPA's) National Risk
Management Research Laboratory focused on nanoparticle synthesis and characterization using EPA facilities.
As in the past, the project will work with diverse primary stakeholders at state and federal levels to implement the
developed technologies at the Paducah Gaseous Diffusion Plant, Kentucky largest Superfund site.
项目概要(项目5 - Bhattacharyya,Ormsbee)
由于其相对的化学稳定性和普遍存在的性质,氯化有机化合物,如
多氯联苯(PCBs)和三氯乙烯(TCE)继续构成补救挑战,
人类健康风险。在许多超级基金站点,过去使用传统处理策略(例如,
电抗性屏障、六相加热等)已经被证明是非常昂贵的,并且在很大程度上无效。替代
策略包括将氯有机物降解为无毒的还原和氧化途径
化合物.纳米铁基材料的发展给纳米材料的研究带来了重要的和有前途的前景。
技术进入环境修复领域。近年来,零价纳米金属(尤其是
铁)颗粒在氯化溶剂的地下水修复中引起了越来越多的关注。有关详细
快速和完全的还原脱氯,第二种金属通常被添加,导致纳米颗粒。
在过去,由于对以下问题的关注,在实际的超级基金地点使用这种方法受到限制:
颗粒团聚或释放到环境中。项目5将解决有针对性的补救需要
通过开发综合的,具有成本效益的技术,将还原和氧化
为在不产生有害物质的情况下彻底治理氯化有机化合物,
三个具体的目标是:1)创建一个多孔的,共同的聚合物膜固定
使用环境安全的方法合成反应性和稳定的铁基纳米颗粒的平台,
防止颗粒的聚集和损失; 2)将固定化的纳米颗粒包埋在响应性膜域中
允许通过还原和氧化方法对PCB和TCE进行高效脱氯; 3)确定
无论是PCB的去矿化与还原的铁(铁和钯)纳米粒子作为第一步,
然后用固定在聚合物膜域中的氧化铁纳米颗粒氧化,将消除
毒性试验证实,会形成有毒的氯取代中间体。为了实现这些目标,
聚合物/膜平台将在实验室规模和全规模开发,
纳米结构的铁合成,以及单独和组合的技术战略将建立,以减少
氯代有机物(选定的多氯联苯和氯乙烯)的毒性。拟议的办法应处理
与纳米颗粒的使用相关的团聚和毒性问题,并允许
氯代有机化合物完全分解为无毒和可生物降解的中间体。的
该项目将包括与美国环境保护署(EPA)的国家风险
管理研究实验室专注于使用EPA设施进行纳米颗粒合成和表征。
与过去一样,该项目将与州和联邦各级的各种主要利益攸关方合作,
在肯塔基州最大的超级基金基地帕迪尤卡气体扩散厂开发技术。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dibakar Bhattacharyya其他文献
Dibakar Bhattacharyya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dibakar Bhattacharyya', 18)}}的其他基金
Chloro-Organic Degradation by Nanosized Metallic Systems
纳米金属系统降解氯有机物
- 批准号:
6932250 - 财政年份:2005
- 资助金额:
$ 30.16万 - 项目类别:
Responsive Membranes and Advanced Materials for Sensing and Remediation of Halo-organics
用于卤代有机物传感和修复的响应膜和先进材料
- 批准号:
10596288 - 财政年份:1997
- 资助金额:
$ 30.16万 - 项目类别:
Chloro-Organic Degradation by Polymer Membrane Immobilized Iron-Based Particle Sy
聚合物膜固定铁基颗粒系统降解氯有机物
- 批准号:
9459895 - 财政年份:
- 资助金额:
$ 30.16万 - 项目类别:
Chloro-Organic Degradation by Nanosized Metallic Systems and by Chelate Modified
纳米金属系统和螯合物改性的氯有机物降解
- 批准号:
7393805 - 财政年份:
- 资助金额:
$ 30.16万 - 项目类别:
Project 7: Chloro-Organic Degradation by Nanosized Metallic Systems and by Chelat
项目 7:纳米金属系统和 Chelat 降解氯有机物
- 批准号:
7417303 - 财政年份:
- 资助金额:
$ 30.16万 - 项目类别:
Chloro-Organic Degradation by Nanosized Metallic Systems
纳米金属系统降解氯有机物
- 批准号:
7311930 - 财政年份:
- 资助金额:
$ 30.16万 - 项目类别:
Project 7: Chloro-Organic Degradation by Nanosized Metallic Systems and by Chelat
项目 7:纳米金属系统和 Chelat 降解氯有机物
- 批准号:
8053925 - 财政年份:
- 资助金额:
$ 30.16万 - 项目类别:
相似海外基金
Molecular Simulations of Additive Self-Assembly, Rheology, and Surface Adsorption in Complex Fluids
复杂流体中添加剂自组装、流变学和表面吸附的分子模拟
- 批准号:
2901619 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Studentship
An Adsorption-Compression Cold Thermal Energy Storage System (ACCESS)
吸附压缩冷热能存储系统(ACCESS)
- 批准号:
EP/W027593/2 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Research Grant
Tuning Precision Fabricated Liquid Crystal Adsorbents - Toward Tailored Adsorption of Per- and Polyfluorinated Alkyl Substances
调整精密制造的液晶吸附剂 - 针对全氟和多氟烷基物质的定制吸附
- 批准号:
24K17729 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Thermal stability of adsorption solar power plants
吸附式太阳能发电厂的热稳定性
- 批准号:
2871817 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Studentship
Computational Studies of Gas Adsorption in Special Nuclear Materials (SNMs).
特殊核材料(SNM)中气体吸附的计算研究。
- 批准号:
2903366 - 财政年份:2024
- 资助金额:
$ 30.16万 - 项目类别:
Studentship
Metal tolerance and metal adsorption through phycosphere control
通过藻圈控制实现金属耐受性和金属吸附
- 批准号:
23H02303 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Integrated experiments and simulations to understand the mechanism and consequences of polymer adsorption in films and nanocomposites
合作研究:综合实验和模拟来了解薄膜和纳米复合材料中聚合物吸附的机制和后果
- 批准号:
2312325 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
Investigation of adsorption of exosomes on porous materials and regulating the behavior to create separation, purification and preservation techniques
研究外泌体在多孔材料上的吸附并调节行为以创建分离、纯化和保存技术
- 批准号:
23KJ0192 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Reflection and adsorption of low energy hydrogen on solid surface
低能氢在固体表面的反射与吸附
- 批准号:
23H01158 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Super-Resolution Imaging of Surface Adsorption on Single Nanoparticles for Electrochemical Dechlorination
用于电化学脱氯的单个纳米颗粒表面吸附的超分辨率成像
- 批准号:
2303933 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant