Matrix Mechanobiology of Ligament Repair

韧带修复的矩阵力学生物学

基本信息

  • 批准号:
    8653276
  • 负责人:
  • 金额:
    $ 22.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

Ligament injuries cause joint instability and can lead to chronic joint disorders. The underlying cause of these functional deficits is the poor structural quality of the repaired matrix. Improvements to clinical outcomes require a mechanistic understanding ofthe physical mechanisms that instruct the restoration of matrix structure and function. The development and validation of mechanistic models would support the application and design of targeted interventions, such as soft-tissue mobilization, that apply mechanical stimuli directly to the remodeling matrix. The primary objective of this research proposal is to characterize physical mechanisms for matrix remodeling during ligament wound healing. The central hypothesis is that mechanical stimulation during wound healing can improve ligament repair by enhancing matrix composition and organization. To test this hypothesis, an experimental and computational methodology will be employed to measure and predict the structural and functional effect of mechanical stimulation on ligament reparative tissue. In Aims 1 and 2, a computational framework will be developed to predict matrix remodeling from mechanical stimulation using tissue-equivalent materials. In Aim 3, an in-vivo experiment will validate the predictive ability of this new model in a three-dimensional finite element simulation. Two potential projects stemming from this work include the design of soft tissue mobilization methods for use in human subjects (clinical trial); and the formulation of a new hypothesis on mechanotransduction mechanisms during repair. This may improve our ability to instruct signaling pathways during tissue repair, and help further our long-term goal of developing therapies for fast and full restoration of soft-tissue function after injury. As a Junior Investigator in the COBRE in Matrix Biology, I will work with my scientific mentor to complete the scientific aims and to develop a grant proposal for future R01 funding.
韧带损伤会导致关节不稳定,并可能导致慢性关节疾病。这些功能缺陷的根本原因是修复基质的结构质量差。临床结果的改善需要对指导基质结构和功能恢复的物理机制有机械性的理解。机械模型的开发和验证将支持有针对性的干预措施的应用和设计,例如软组织动员,将机械刺激直接应用于重塑矩阵。本研究提案的主要目的是表征韧带伤口愈合过程中基质重塑的物理机制。中心假设是伤口愈合过程中的机械刺激可以通过增强基质组成和组织来改善韧带修复。为了检验这一假设,将采用实验和计算方法来测量和预测机械刺激对韧带修复组织的结构和功能影响。在目标 1 和 2 中,将开发一个计算框架来预测使用组织等效材料的机械刺激的矩阵重塑。在目标 3 中,体内实验将验证该新模型在三维有限元模拟中的预测能力。这项工作产生的两个潜在项目包括设计用于人类受试者的软组织动员方法(临床试验);并提出了修复过程中力传导机制的新假设。这可能会提高我们在组织修复过程中指导信号通路的能力,并有助于进一步实现我们开发损伤后软组织功能快速、全面恢复的疗法的长期目标。作为 COBRE 基质生物学的初级研究员,我将与我的科学导师合作,完成科学目标并为未来的 R01 资金制定资助提案。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Trevor Justin Lujan其他文献

Trevor Justin Lujan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Trevor Justin Lujan', 18)}}的其他基金

Role of Distortion Energy in Fibroblast-Mediated Remodeling of Collagen Matrices
畸变能在成纤维细胞介导的胶原基质重塑中的作用
  • 批准号:
    10452423
  • 财政年份:
    2021
  • 资助金额:
    $ 22.37万
  • 项目类别:
A cost-effective bioreactor to advance functional tissue engineering of cartilage
一种具有成本效益的生物反应器,可推进软骨功能组织工程
  • 批准号:
    7908519
  • 财政年份:
    2010
  • 资助金额:
    $ 22.37万
  • 项目类别:
Matrix Mechanobiology of Ligament Repair
韧带修复的矩阵力学生物学
  • 批准号:
    9067408
  • 财政年份:
  • 资助金额:
    $ 22.37万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.37万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了