Anastasis, a new mechanism driving cell survival and evolution

Anastasis,驱动细胞生存和进化的新机制

基本信息

项目摘要

DESCRIPTION (provided by applicant): We recently discovered a new biological phenomenon, which we call anastasis (Greek for “rising to life”). Overturning the current dogma that cell death is irreversible, we found that a variety of normal and cancer cell types can reverse the process, survive, and proliferate. This reversibility takes place even after cells experience events widely believed to be points of no return, including activation of caspase enzymes and widespread DNA damage. Notably, while most cells fully recover and repair their damaged DNA, some cells retain mutations, and this increases the frequency of oncogenic transformation. The discovery of anastasis has at least five paradigm-shifting implications. First, we suggest that anastasis represents a previously unknown cause of cancer, so inhibiting anastasis should prevent cancer. Anastasis could also offer an explanation for the longstanding observation that repeated injury increases the incidence of cancer. Second, we propose that anastasis allows tumor cells to escape chemotherapy and evolve drug resistance. Therefore, inhibiting anastasis may enhance the effectiveness of chemoand radiation therapies and prevent relapses. Third, salvaging cells on the brink of death via anastasis may limit permanent tissue injury due to transient environmental stresses or toxin exposures. Consequently, enhancing anastasis may promote tissue regeneration. Fourth, we posit that anastasis is a cell survival mechanism that protects cells that are difficult to replace such as neurons in the adult brain or heart muscle cells, so promoting anastasis could prevent or slow degenerative diseases. Fifth, we propose that the survival of germ cells with mutations acquired through anastasis provides a mechanism to enhance genetic diversity precisely when animals are exposed to stressful environmental conditions. This could accelerate adaptation to changing environments during evolution. Here we propose to test these ideas. We designed a biosensor that will allow us to identify and track cells that undergo anastasis in vivo by creating permanent expression of a reporter such as GFP in cells that survive caspase activation. Using this biosensor in mice we propose to test the hypotheses that transient injuries and stresses induce anastasis, that anastasis causes cancer and allows tumor cells to evade therapies and develop drug resistance. Using the biosensor in Drosophila, we will test the hypothesis that anastasis enhances genetic diversity in the population. In addition, we propose to decipher the molecular mechanisms that allow cells to reverse the dying process and survive and identify molecular approaches to inhibit or enhance anastasis. The successful completion of this project offers the potential to develop revolutionary new therapies for cancer, neurodegenerative diseases, and heart failure, and provide new insight into the mechanisms of evolution by natural selection.
描述(由申请人提供):我们最近发现了一种新的生物现象,我们称之为 anastasis(希腊语“复活”)。 推翻了当前细胞死亡不可逆转的教条,我们发现多种正常和 癌细胞类型可以逆转这一过程、存活和增殖。这种可逆性甚至会发生 当细胞经历被广泛认为是不可逆转的事件后,包括半胱天冬酶的激活 酶和广泛的 DNA 损伤。值得注意的是,虽然大多数细胞完全恢复并修复受损的细胞 DNA,一些细胞保留突变,这增加了致癌转化的频率。这 阿纳斯塔西斯的发现至少具有五个范式转变的意义。首先,我们建议阿纳斯塔西斯 代表了以前未知的癌症原因,因此抑制 anastasis 应该可以预防癌症。 阿纳斯塔西斯还可以为长期观察到的反复损伤增加的现象提供解释。 癌症的发病率。其次,我们提出anastasis可以让肿瘤细胞逃避化疗 并产生耐药性。因此,抑制吻合可能会增强化疗的有效性。 放射治疗并预防复发。三、通过解剖挽救濒临死亡的细胞 可以限制由于短暂的环境压力或毒素暴露而造成的永久性组织损伤。 因此,增强吻合可能促进组织再生。第四,我们假设 anastasis 是 一种细胞生存机制,可以保护难以替代的细胞,例如成人大脑中的神经元 或心肌细胞,因此促进吻合可以预防或减缓退行性疾病。第五,我们 提出通过 anastasis 获得突变的生殖细胞的存活提供了一种机制 当动物暴露在压力环境条件下时,精确地增强遗传多样性。 这可以加速对进化过程中不断变化的环境的适应。这里我们建议测试一下 这些想法。我们设计了一种生物传感器,使我们能够识别和跟踪经历吻合的细胞 在体内,通过在 caspase 存活的细胞中永久表达 GFP 等报告基因 激活。我们建议在小鼠中使用这种生物传感器来测试短暂损伤和 压力会诱发肿瘤,肿瘤细胞会逃避治疗并导致癌症 产生耐药性。使用果蝇中的生物传感器,我们将测试 anastasis 的假设 增强人群的遗传多样性。此外,我们建议破译分子 允许细胞逆转死亡过程并存活的机制和识别分子方法 抑制或增强吻合。该项目的成功完成为公司的发展提供了潜力 针对癌症、神经退行性疾病和心力衰竭的革命性新疗法,并提供新的治疗方法 深入了解自然选择的进化机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denise J. Montell其他文献

Septins regulate border cell surface geometry, shape, and motility downstream of Rho in emDrosophila/em
在果蝇胚胎中,隔离蛋白在 Rho 下游调控边界细胞表面的几何形状、形状和运动性。
  • DOI:
    10.1016/j.devcel.2023.05.017
  • 发表时间:
    2023-08-07
  • 期刊:
  • 影响因子:
    8.700
  • 作者:
    Allison M. Gabbert;Joseph P. Campanale;James A. Mondo;Noah P. Mitchell;Adele Myers;Sebastian J. Streichan;Nina Miolane;Denise J. Montell
  • 通讯作者:
    Denise J. Montell
Border-cell migration: the race is on
边缘细胞迁移:竞赛正在进行
Editorial: Special issue SCDB "Cell death and survival": Cell death and resilience in health and disease.
社论:SCDB 特刊“细胞死亡与生存”:健康和疾病中的细胞死亡与恢复力。
Apoptotic signaling: Beyond cell death
凋亡信号传导:超越细胞死亡
  • DOI:
    10.1016/j.semcdb.2023.11.002
  • 发表时间:
    2024-03-15
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    Maddalena Nano;Denise J. Montell
  • 通讯作者:
    Denise J. Montell
Ovarian Cancer Metastasis: Integrating insights from disparate model organisms
卵巢癌转移:整合来自不同模式生物的见解
  • DOI:
    10.1038/nrc1611
  • 发表时间:
    2005-05-01
  • 期刊:
  • 影响因子:
    66.800
  • 作者:
    Honami Naora;Denise J. Montell
  • 通讯作者:
    Denise J. Montell

Denise J. Montell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denise J. Montell', 18)}}的其他基金

Mechanisms of stem cell preservation and lifespan extension in Drosophila
果蝇干细胞保存和寿命延长的机制
  • 批准号:
    9803243
  • 财政年份:
    2019
  • 资助金额:
    $ 76.75万
  • 项目类别:
Mechanisms of stem cell preservation and lifespan extension in Drosophila
果蝇干细胞保存和寿命延长的机制
  • 批准号:
    10399509
  • 财政年份:
    2019
  • 资助金额:
    $ 76.75万
  • 项目类别:
Mechanisms of stem cell preservation and lifespan extension in Drosophila
果蝇干细胞保存和寿命延长的机制
  • 批准号:
    10625313
  • 财政年份:
    2019
  • 资助金额:
    $ 76.75万
  • 项目类别:
2015 Directed Cell Migration Gordon Research Conference & Gordon Research Seminar
2015年定向细胞迁移戈登研究会议
  • 批准号:
    8837312
  • 财政年份:
    2015
  • 资助金额:
    $ 76.75万
  • 项目类别:
Anastasis, a new mechanism driving cell survival and evolution
Anastasis,驱动细胞生存和进化的新机制
  • 批准号:
    8932673
  • 财政年份:
    2014
  • 资助金额:
    $ 76.75万
  • 项目类别:
Anastasis, a new mechanism driving cell survival and evolution
Anastasis,驱动细胞生存和进化的新机制
  • 批准号:
    9099812
  • 财政年份:
    2014
  • 资助金额:
    $ 76.75万
  • 项目类别:
Reversal of apoptosis:an in vivo mechanism for cytoprotection and mutagenesis
细胞凋亡的逆转:细胞保护和诱变的体内机制
  • 批准号:
    8720004
  • 财政年份:
    2013
  • 资助金额:
    $ 76.75万
  • 项目类别:
Reversal of apoptosis:an in vivo mechanism for cytoprotection and mutagenesis
细胞凋亡的逆转:细胞保护和诱变的体内机制
  • 批准号:
    8589289
  • 财政年份:
    2013
  • 资助金额:
    $ 76.75万
  • 项目类别:
Regulation of Cell Migration in Development
发育过程中细胞迁移的调控
  • 批准号:
    7929984
  • 财政年份:
    2009
  • 资助金额:
    $ 76.75万
  • 项目类别:
DISCOVERY
发现
  • 批准号:
    7313396
  • 财政年份:
    2006
  • 资助金额:
    $ 76.75万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 76.75万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 76.75万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 76.75万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 76.75万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 76.75万
  • 项目类别:
    Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 76.75万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 76.75万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
  • 批准号:
    23KK0126
  • 财政年份:
    2023
  • 资助金额:
    $ 76.75万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 76.75万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 76.75万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了