Probabilistic Disease Surveillance
概率疾病监测
基本信息
- 批准号:8708209
- 负责人:
- 金额:$ 53.58万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:Accident and Emergency departmentAdvanced DevelopmentAreaBayesian MethodCharacteristicsClinicalCodeCommunicable DiseasesComplexComputer SystemsComputerized Medical RecordCountyDataData SourcesDecision MakingDetectionDiagnosisDiagnosticDiseaseDisease OutbreaksDisease modelEpidemicEpidemiologistEpidemiologyEvaluationFutureHealthHealthcareHealthcare SystemsIncidenceIndividualInfluenzaInterventionKnowledgeLaboratoriesLung diseasesMeasuresMethodsModelingMonitorMorbidity - disease rateNatural Language ProcessingPatientsPerformancePhysiciansPopulationProbabilityPublic HealthPublic Health PracticePublicationsROC CurveReportingResearchSchoolsSensitivity and SpecificitySeveritiesSimulateSodium ChlorideStructureSupport SystemSystemSystems IntegrationTestingTextTimeTopazUniversitiesUtahVaccinationadvanced systembasecomputer codediagnostic accuracydisorder controlfollow-upimprovedinfluenza outbreakinnovationinterestknowledge basemortalitynovelnovel strategiesoperationpandemic diseasepopulation healthportabilityreproductiverespiratorysurveillance data
项目摘要
DESCRIPTION (provided by applicant):
The proposed research will further develop and evaluate a probabilistic approach to disease surveillance. In this approach, a probabilistic case detection system (CDS) uses Bayesian diagnostic networks to compute the likelihoods of patient findings for each of a set of infectious diseases for every patient in a monitored population. CDS computes these likelihoods from data in electronic medical records, including information derived from free-text reports by natural language processing. CDS makes those estimates available to a probabilistic outbreak detection and characterization component (ODCS).
ODCS also utilizes a Bayesian approach to compute the probability that an outbreak is ongoing for each of a set of infectious diseases of interest, given information from CDS. ODCS also computes probability distributions over the current and future size of a detected outbreak and other characteristics such as incubation period used by public health officials when responding to an outbreak.
The proposed research will extend the approach, which we have already developed and evaluated for the disease influenza to six additional respiratory infectious diseases. The research will also extend the capabilities of ODCS to utilize non-EMR data, detect an unknown disease, and detect and characterize concurrent outbreaks. The planned evaluations will measure the accuracy of both CDS and ODCS using historical surveillance data from two regions and simulated outbreak data, which we will create by adding outbreak cases generated by an agent-based epidemic simulator to real baseline surveillance data from non-outbreak periods.
The innovation being advanced by this research is a novel, integrated, Bayesian approach for the early and accurate detection of cases of diseases that threaten health and for the detection and characterization of outbreaks of diseases that threaten public health. The proposed approach has significant potential to improve the information available to public health officials and physicians, which can be expected to improve clinical and public health decision making, and ultimately to improve population health.
描述(由申请人提供):
拟议的研究将进一步发展和评估疾病监测的概率方法。在这种方法中,概率病例检测系统(CDS)使用贝叶斯诊断网络来计算被监测人群中每个患者的一组传染病中每一种患者发现的可能性。CDS根据电子医疗记录中的数据计算这些可能性,包括通过自然语言处理从自由文本报告中获得的信息。CDS将这些估计提供给概率暴发检测和特征部分(ODCS)。
疾病预防控制和预防中心还利用贝叶斯方法,根据疾控中心提供的信息,计算一组感兴趣的传染病中的每一种疾病正在暴发的概率。疾病控制和预防中心还计算检测到的疫情当前和未来规模的概率分布,以及公共卫生官员在应对疫情时使用的潜伏期等其他特征。
这项拟议的研究将把我们已经为流感疾病开发和评估的方法扩展到另外六种呼吸道传染病。这项研究还将扩展ODCS的能力,以利用非EMR数据,检测未知疾病,并检测和表征同时爆发的疫情。计划中的评估将使用两个地区的历史监测数据和模拟的疫情数据来衡量CDS和ODCS的准确性,我们将通过将基于代理的流行病模拟器生成的疫情病例添加到来自非暴发期的真实基线监测数据来创建这些数据。
这项研究正在推进的创新是一种新的、综合的贝叶斯方法,用于早期和准确地检测威胁健康的疾病病例,并检测和描述威胁公共健康的疾病的暴发。拟议的方法具有巨大的潜力,可以改善公共卫生官员和医生可获得的信息,这有望改善临床和公共卫生决策,并最终改善人口健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MICHAEL MATTHEW WAGNER其他文献
MICHAEL MATTHEW WAGNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MICHAEL MATTHEW WAGNER', 18)}}的其他基金
UNIVERSITY OF PITTSBURGH CENTER FOR ADVANCED STUDY OF INFORMATICS IN PUBLIC HEALT
匹兹堡大学公共卫生信息学高级研究中心
- 批准号:
7925666 - 财政年份:2009
- 资助金额:
$ 53.58万 - 项目类别:
HK09-001, Centers of Excellence in Public Health Informatics
HK09-001,公共卫生信息学卓越中心
- 批准号:
8324122 - 财政年份:2009
- 资助金额:
$ 53.58万 - 项目类别:
UNIVERSITY OF PITTSBURGH CENTER FOR ADVANCED STUDY OF INFORMATICS IN PUBLIC HEALT
匹兹堡大学公共卫生信息学高级研究中心
- 批准号:
8139271 - 财政年份:2009
- 资助金额:
$ 53.58万 - 项目类别:
UNIVERSITY OF PITTSBURGH CENTER FOR ADVANCED STUDY OF INFORMATICS IN PUBLIC HEALT
匹兹堡大学公共卫生信息学高级研究中心
- 批准号:
7806861 - 财政年份:2009
- 资助金额:
$ 53.58万 - 项目类别:
BELIEF NETWORK BASED REMINDER SYSTEMS THAT LEARN
基于信念网络的学习提醒系统
- 批准号:
2872989 - 财政年份:1997
- 资助金额:
$ 53.58万 - 项目类别:
BELIEF NETWORK BASED REMINDER SYSTEMS THAT LEARN
基于信念网络的学习提醒系统
- 批准号:
6151393 - 财政年份:1997
- 资助金额:
$ 53.58万 - 项目类别:
BELIEF NETWORK BASED REMINDER SYSTEMS THAT LEARN
基于信念网络的学习提醒系统
- 批准号:
2655310 - 财政年份:1997
- 资助金额:
$ 53.58万 - 项目类别:
相似海外基金
ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
- 批准号:
10935820 - 财政年份:2023
- 资助金额:
$ 53.58万 - 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
- 批准号:
10932514 - 财政年份:2023
- 资助金额:
$ 53.58万 - 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
- 批准号:
10704845 - 财政年份:2023
- 资助金额:
$ 53.58万 - 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
- 批准号:
10709085 - 财政年份:2023
- 资助金额:
$ 53.58万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10409385 - 财政年份:2022
- 资助金额:
$ 53.58万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10710595 - 财政年份:2022
- 资助金额:
$ 53.58万 - 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
- 批准号:
10630975 - 财政年份:2022
- 资助金额:
$ 53.58万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
- 批准号:
10710588 - 财政年份:2022
- 资助金额:
$ 53.58万 - 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
- 批准号:
10788051 - 财政年份:2022
- 资助金额:
$ 53.58万 - 项目类别:














{{item.name}}会员




