Uncertainty in Spatial Data: Identification, Visualization and Utilization
空间数据的不确定性:识别、可视化和利用
基本信息
- 批准号:8615008
- 负责人:
- 金额:$ 30.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressCharacteristicsClassificationCommunicationCoupledDataData QualityData SetDetectionDrug FormulationsEcological BiasEnvironmentEpidemiologyEquipment and supply inventoriesFutureGeographic DistributionGeographic Information SystemsHealthImageryIndividualKnowledgeLocationMalignant NeoplasmsMapsMeasurementMeasuresMethodsModelingNeighborhoodsOutcomePatternPolicy MakingPrivacyProcessPublishingReaderResearchResolutionRespondentSamplingSocioeconomic StatusStatistical MethodsTechniquesTranslatingUncertaintyVisualWorkdata modelingdesignimprovedindexingpopulation healthpublic health relevanceresponsesoundtool
项目摘要
Project Summary
This proposal is a response to PA-11-238, Spatial Uncertainty: Data, Modeling and
Communication (R01). Our research focuses on documenting, visualizing and utilizing data
error and uncertainty information in spatial analysis. When features undergo spatial
aggregation, corruptions introduced through the process are not documented. Data users are
not aware of the magnitude of error in and uncertainty accompanying a given dataset. Health
outcomes of geocoded individual respondents often require aggregation, either geographically
or categorically, in order to preserve privacy when publishing indices, say, derived cancer rates.
Properly explaining health outcomes by neighborhood-level characteristics requires knowledge
as well as a utilization of the geographic distribution of individuals within areal units coupled with
areal associations among these geographic distributions. On the other hand, as data quality
information is becoming more readily available, existing mapping tools fail to sufficiently include
data quality information. Also, data users often ignore data error and uncertainty information,
treating spatial data and associated maps as error- and uncertainty-free. Thus, analyses, such
as geographic cluster detection, are performed without considering the quality of data.
This proposal addresses these particular data quality issues with the following specific aims: 1)
formulate indices to quantify impacts of aggregation error. We would address two aspects:
distributions of geocoded individuals within areal units, and impacts of attribute errors through
spatial aggregation. 2) develop methods and tools to visualize attribute errors arising from
sampling and spatial aggregation. We would enhance our current data quality visualization
tools for a GIS, modify existing visualization frameworks, and introduce tools to support new
legend designs and map classification methods. 3) introduce spatial statistical methods to
incorporate error and uncertainty information into the analyses of global and local spatial
pattern detection. We would evaluate the reliability of existing methods, and propose new
methods to account for sampling, specification, and measurement error. We would incorporate
the aggregation error measures developed through achieving our Aim 1. Ignoring error in spatial
data is detrimental to the formulation of effective policies and the making of sound decisions.
Our proposed work would enhance future data gathering and processing effort, enable users to
consider different types of error information, improve the reliability of spatial pattern detection by
incorporating data quality information, and translate uncertainty information into maps and
communicate data quality information to users. Results have very general applicability.
项目摘要
本提案是对PA-11-238《空间不确定性:数据、建模和
通信(R01)。我们的研究重点是记录、可视化和利用数据
空间分析中的误差和不确定性信息。当要素经历空间时
聚合、通过该过程引入的腐败没有记录在案。数据用户是
不知道给定数据集的误差和不确定性的大小。健康状况
地理编码的单个受访者的结果通常需要聚合,无论是在地理上
或者明确地说,为了在发布指数时保护隐私,比方说,得出的癌症比率。
根据邻里层面的特征正确解释健康结果需要知识
以及利用区域单位内个人的地理分布
这些地理分布之间的地域联系。另一方面,由于数据质量
信息变得越来越容易获得,现有的地图工具无法充分包括
数据质量信息。此外,数据用户经常忽略数据错误和不确定性信息,
将空间数据和相关地图视为无错误和无不确定性。因此,分析,如
作为地理集群检测,在不考虑数据质量的情况下执行。
本提案旨在解决这些特定的数据质量问题,具体目标如下:1)
制定指标,量化聚合误差的影响。我们将从两个方面着手:
地理编码的个体在区域单元内的分布,以及属性误差通过
空间聚集。2)开发可视化属性错误的方法和工具
采样和空间聚集。我们将增强我们当前的数据质量可视化
用于GIS的工具,修改现有可视化框架,并引入工具以支持新的
图例设计和地图分类方法。3)引入空间统计方法
将误差和不确定性信息纳入全球和局部空间分析
模式检测。我们将评估现有方法的可靠性,并提出新的
说明抽样、规格和测量误差的方法。我们会把
通过实现我们的目标而发展的聚集误差度量1.忽略空间误差
数据不利于制定有效的政策和做出正确的决策。
我们拟议的工作将加强未来的数据收集和处理工作,使用户能够
考虑不同类型的错误信息,通过以下方法提高空间模式检测的可靠性
结合数据质量信息,并将不确定性信息转换为地图和
向用户传达数据质量信息。结果具有非常普遍的适用性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Daniel A Griffith其他文献
Daniel A Griffith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Daniel A Griffith', 18)}}的其他基金
Uncertainty in Spatial Data: Identification, Visualization and Utilization
空间数据的不确定性:识别、可视化和利用
- 批准号:
9132325 - 财政年份:2014
- 资助金额:
$ 30.4万 - 项目类别:
Uncertainty in Spatial Data: Identification, Visualization and Utilization
空间数据的不确定性:识别、可视化和利用
- 批准号:
8916168 - 财政年份:2014
- 资助金额:
$ 30.4万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 30.4万 - 项目类别:
Research Grant