Uncertainty in Spatial Data: Identification, Visualization and Utilization

空间数据的不确定性:识别、可视化和利用

基本信息

  • 批准号:
    9132325
  • 负责人:
  • 金额:
    $ 28.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): This proposal is a response to PA-11-238, Spatial Uncertainty: Data, Modeling and Communication (R01). Our research focuses on documenting, visualizing and utilizing data error and uncertainty information in spatial analysis. When features undergo spatial aggregation, corruptions introduced through the process are not documented. Data users are not aware of the magnitude of error in and uncertainty accompanying a given dataset. Health outcomes of geocoded individual respondents often require aggregation, either geographically or categorically, in order to preserve privacy when publishing indices, say, derived cancer rates. Properly explaining health outcomes by neighborhood-level characteristics requires knowledge as well as a utilization of the geographic distribution of individuals within areal units coupled with areal associations among these geographic distributions. On the other hand, as data quality information is becoming more readily available, existing mapping tools fail to sufficiently include data quality information. Also, data users often ignore data error and uncertainty information, treating spatial data and associated maps as error- and uncertainty-free. Thus, analyses, such as geographic cluster detection, are performed without considering the quality of data. This proposal addresses these particular data quality issues with the following specific aims: 1) formulate indices to quantify impacts of aggregation error. We would address two aspects: distributions of geocoded individuals within areal units, and impacts of attribute errors through spatial aggregation. 2) develop methods and tools to visualize attribute errors arising from sampling and spatial aggregation. We would enhance our current data quality visualization tools for a GIS, modify existing visualization frameworks, and introduce tools to support new legend designs and map classification methods. 3) introduce spatial statistical methods to incorporate error and uncertainty information into the analyses of global and local spatial pattern detection. We would evaluate the reliability of existing methods, and propose new methods to account for sampling, specification, and measurement error. We would incorporate the aggregation error measures developed through achieving our Aim 1. Ignoring error in spatial data is detrimental to the formulation of effective policies and the making of sound decisions. Our proposed work would enhance future data gathering and processing effort, enable users to consider different types of error information, improve the reliability of spatial pattern detection by incorporating data quality information, and translate uncertainty information into maps and communicate data quality information to users. Results have very general applicability.
描述(由申请人提供):本提案是对PA-11-238,空间不确定性:数据,建模和通信(R01)的回应。我们的研究重点是在空间分析中记录、可视化和利用数据误差和不确定性信息。当功能

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Visualizing statistical significance of disease clusters using cartograms.
A heuristic multi-criteria classification approach incorporating data quality information for choropleth mapping.
Geovisualizing attribute uncertainty of interval and ratio variables: a framework and an implementation for vector data.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel A Griffith其他文献

Daniel A Griffith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel A Griffith', 18)}}的其他基金

Uncertainty in Spatial Data: Identification, Visualization and Utilization
空间数据的不确定性:识别、可视化和利用
  • 批准号:
    8615008
  • 财政年份:
    2014
  • 资助金额:
    $ 28.1万
  • 项目类别:
Uncertainty in Spatial Data: Identification, Visualization and Utilization
空间数据的不确定性:识别、可视化和利用
  • 批准号:
    8916168
  • 财政年份:
    2014
  • 资助金额:
    $ 28.1万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 28.1万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了