Gradient-based strategy for osteochondral regeneration

基于梯度的骨软骨再生策略

基本信息

  • 批准号:
    8451200
  • 负责人:
  • 金额:
    $ 24.17万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-04-01 至 2015-03-31
  • 项目状态:
    已结题

项目摘要

The long-term objective of this application is to develop a stem-cell based osteochondral biomaterial that can be used for reconstructing joints damaged by osteoarthritis (OA) and trauma. Toward this objective, we have developed a novel gradient scaffold technology that affords precise spatiotemporal control of the scaffold design, creating both signal (growth factor) and mechanical stiffness gradients of any desired profile. Although signal gradients are vital to embryogenesis, wound healing, and countless other biological processes, they have yet to be systematically investigated in musculoskeletal tissue engineering. Moreover, stiffness gradients remain virtually unexplored in biomaterials, and our unique approach introduces an entirely new technology to accommodate the contrasting mechanical demands of bone and cartilage. Also new to musculoskeletal tissue engineering are umbilical cord matrix stem cells (UCMSCs), which possess tremendous potential with numerous key advantages over other stem cell sources. The overall goal of this proposal is thus to employ a combination of these innovative approaches to engineer seamless osteochondral constructs for the treatment of rabbit knee defects. The significance of the seamless design lies in the ability to create a single, integrated osteochondral tissue instead of discrete bone and cartilage regions. The chief hypothesis is that UCMSCs in a novel gradient-driven scaffold design will lead to a mechanically viable osteochondral construct that will mimic the seamless transition of native tissue from bone to zonally organized cartilage. To test this hypothesis, we propose the following specific aims: 1) to develop and characterize novel scaffolds containing stiffness- and growth factor-gradients, 2) to engineer seamless osteochondral constructs in vitro, and 3) to determine the efficacy of osteochondral constructs in a rabbit knee defect model. Our overall strategy is to develop a heterogeneous scaffold that will contain a mechanical stiffness gradient, increasing from the cartilage region to the bone region, and also release precisely-controlled and opposing gradients of chondrogenic and osteogenic factors to differentiate stem cells. These gradients are accomplished by varying the relative numbers of "osteogenic" and "chondrogenic" microspheres along the scaffold length, which differ in material composition and encapsulated signal. The material composition and growth factor loading for these microspheres will be determined in the design-driven first aim. The gradient-based scaffolds will be seeded with stem cells in the next two aims, where UCMSCs will be compared to the long standing gold standard, bone-marrow derived mesenchymal stem cells (BMSCs), to test the hypothesis that UCMSCs will outperform BMSCs both in vitro and in vivo. Successful completion of this project will deliver gradient-based scaffolds comprised of FDA-approved materials in combination with a readily available, non-controversial, and immune-compatible human cell source. Moreover, this technology will have a high impact on other fields in the future where a gradient or integrated interface is desired, such as nerve regeneration, the ligament/bone interface, and beyond.
这项应用的长期目标是开发一种基于干细胞的骨软骨生物材料,可用于重建骨关节炎和创伤损伤的关节。为了实现这一目标,我们开发了一种新的梯度支架技术,可以对支架设计进行精确的时空控制,创建任何所需轮廓的信号(生长因子)和机械刚度梯度。尽管信号梯度对胚胎发生、伤口愈合和无数其他生物过程至关重要,但它们在肌肉骨骼组织工程中尚未得到系统的研究。此外,刚度梯度在生物材料中几乎没有被探索过,我们独特的方法引入了一种全新的技术来适应骨和软骨的不同机械需求。脐带基质干细胞(UCMSCs)也是肌肉骨骼组织工程的新成员,与其他干细胞来源相比,它具有许多关键优势,具有巨大的潜力。因此,本建议的总体目标是采用

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael S. Detamore其他文献

A Call to Action for Bioengineers and Dental Professionals: Directives for the Future of TMJ Bioengineering
  • DOI:
    10.1007/s10439-007-9298-6
  • 发表时间:
    2007-03-29
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Michael S. Detamore;Kyriacos A. Athanasiou;Jeremy Mao
  • 通讯作者:
    Jeremy Mao
Comparison of the chondrogenic potential of eBMSCs and eUCMSCs in response to selected peptides and compounds
  • DOI:
    10.1186/s12917-024-04448-3
  • 发表时间:
    2025-02-17
  • 期刊:
  • 影响因子:
    2.600
  • 作者:
    Boushra Ajeeb;Emi A. Kiyotake;Peggy A. Keefe;Jennifer Nikki Phillips;Jennifer N. Hatzel;Laurie R. Goodrich;Michael S. Detamore
  • 通讯作者:
    Michael S. Detamore
Regenerative rehabilitation with conductive biomaterials for spinal cord injury
用导电生物材料进行脊髓损伤的再生康复
  • DOI:
    10.1016/j.actbio.2020.12.021
  • 发表时间:
    2022-02-01
  • 期刊:
  • 影响因子:
    9.600
  • 作者:
    Emi A. Kiyotake;Michael D. Martin;Michael S. Detamore
  • 通讯作者:
    Michael S. Detamore
Emerging Trends in Biomaterials Research
  • DOI:
    10.1007/s10439-016-1644-0
  • 发表时间:
    2016-05-16
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    Akhilesh K. Gaharwar;Michael S. Detamore;Ali Khademhosseini
  • 通讯作者:
    Ali Khademhosseini
Interface Performance Enhancement in 3D-Printed Biphasic Scaffolds with Interlocking Hourglass Geometry
  • DOI:
    10.1007/s10439-025-03791-2
  • 发表时间:
    2025-07-11
  • 期刊:
  • 影响因子:
    5.400
  • 作者:
    David S. Nedrelow;Michael S. Detamore
  • 通讯作者:
    Michael S. Detamore

Michael S. Detamore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael S. Detamore', 18)}}的其他基金

Peptide Discovery for Chondrogenesis
软骨形成肽的发现
  • 批准号:
    10594547
  • 财政年份:
    2022
  • 资助金额:
    $ 24.17万
  • 项目类别:
Peptide Discovery for Chondrogenesis
软骨形成肽的发现
  • 批准号:
    10453351
  • 财政年份:
    2022
  • 资助金额:
    $ 24.17万
  • 项目类别:
Introducing a Chondroinductive Peptide
软骨诱导肽简介
  • 批准号:
    10226716
  • 财政年份:
    2021
  • 资助金额:
    $ 24.17万
  • 项目类别:
Gradient-based strategy for osteochondral regeneration
基于梯度的骨软骨再生策略
  • 批准号:
    8235065
  • 财政年份:
    2010
  • 资助金额:
    $ 24.17万
  • 项目类别:
Gradient-based strategy for osteochondral regeneration
基于梯度的骨软骨再生策略
  • 批准号:
    8039177
  • 财政年份:
    2010
  • 资助金额:
    $ 24.17万
  • 项目类别:
Gradient-based strategy for osteochondral regeneration
基于梯度的骨软骨再生策略
  • 批准号:
    8640074
  • 财政年份:
    2010
  • 资助金额:
    $ 24.17万
  • 项目类别:
Gradient-based strategy for osteochondral regeneration
基于梯度的骨软骨再生策略
  • 批准号:
    7889601
  • 财政年份:
    2010
  • 资助金额:
    $ 24.17万
  • 项目类别:
High toughness bio-inspired hydrogels for cartilage tissue engineering
用于软骨组织工程的高韧性仿生水凝胶
  • 批准号:
    7771693
  • 财政年份:
    2009
  • 资助金额:
    $ 24.17万
  • 项目类别:
2nd TMJ Bioengineering Conference
第二届颞下颌关节生物工程会议
  • 批准号:
    7541599
  • 财政年份:
    2009
  • 资助金额:
    $ 24.17万
  • 项目类别:
Solvent-free engineering of a shape-specific osteochondral TMJ condyle
形状特异性骨软骨 TMJ 髁的无溶剂工程
  • 批准号:
    7532401
  • 财政年份:
    2009
  • 资助金额:
    $ 24.17万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 24.17万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了