High toughness bio-inspired hydrogels for cartilage tissue engineering
用于软骨组织工程的高韧性仿生水凝胶
基本信息
- 批准号:7771693
- 负责人:
- 金额:$ 21.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-01 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdhesionsAdultAffectAmericanArginineArthritisAspartic AcidBehaviorBiochemicalBiocompatible MaterialsBiologicalBiomechanicsCartilageCell SurvivalCellsChondrocytesChondrogenesisChondroitin SulfatesDegenerative polyarthritisDevelopmentEncapsulatedEngineeringEnsureEnvironmentEthylene GlycolsFailureFlowersFractureFutureGelGlycineHip region structureHumanHydrogelsIndividualInsectaInvestigationJointsKneeLifeLiteratureMechanical StimulationMechanicsMethodsModelingModificationMolecular WeightMusculoskeletalOrthopedicsPatientsPerformancePhenotypePolymersProceduresProcessProductionProgram Research Project GrantsPropertyQuality of lifeResearchResearch PersonnelResistanceScienceSepharoseSignal TransductionSolutionsSourceStructureTechnologyTestingTimeTissue EngineeringTissuesUnited Statesaggrecanarticular cartilagebasecartilage regenerationclinical applicationcostdesigndisabilityductileethylene glycolexperienceimprovedmonolayernanostructurednovelnovel strategiesosteochondral tissuephotopolymerizationpoly(ethylene glycol)diacrylatepreventprotein aminoacid sequencepublic health relevanceresponsescaffoldsuccesstreatment strategy
项目摘要
DESCRIPTION (provided by applicant): The long-term objective of this application is to engineer mechanically viable cartilage constructs for treatment of severe osteoarthritis. The overall objective of this proposal is to combine recent advances in creating high toughness interpenetrating network hydrogels (IPNs) and the chondrogenic ability of aggrecan to create a significant new class of biomaterials for cartilage regeneration. We have taken two hydrogels commonly used in cartilage tissue engineering, agarose and poly(ethylene glycol), and developed a novel synthesis procedure to combine these two materials into an IPN with vastly improved mechanical properties compared to the individual constituents. This novel IPN hydrogel is created by physical gelation of the agarose (with cells encapsulated) followed by photopolymerization of embedded poly(ethylene glycol) diacrylate (PEG-DA), a process in which we have shown cells maintain their viability (unprecedented in the literature). The IPN has a compressive modulus close to that of native cartilage, and most importantly, a toughness (the energy required to fracture under compression) 5 and 100 times larger than PEG-DA or agarose alone, respectively. The significance of this discovery is that by creating IPNs of high toughness, we overcome a major limitation of current hydrogel scaffolds, as high toughness is crucial for withstanding fracture in demanding environments such as a human knee or hip. Another major limitation is the inability to provide sufficient biochemical signals for chondrogenesis. Thus we propose a novel modification to the scaffold by incorporating aggrecan into our high toughness IPN. Aggrecan has been exploited recently in monolayer studies to promote and retain chondrocytic phenotype, but heretofore has not been employed as a chondrogenic signal in a tissue engineering scaffold. The chief hypothesis is that use of this breakthrough in IPN technology, along with aggrecan as a bioactive signal, will produce engineered cartilage constructs with mechanical integrity comparable to native human cartilage. To test this hypothesis, we propose the following specific aims: (1) to further improve the performance of our high-toughness IPNs of agarose/PEG-DA (recent literature on related IPNs suggests a 1000-fold increase in toughness over the single component networks may be achievable), and (2) to incorporate bioactive molecules into the agarose/PEG-DA IPN. We will first vary the composition of the IPN to maximize its toughness (to prevent failure) while maintaining its stiffness within the range of native human cartilage (to provide similar resistance to deformation). Using this composition, we will incorporate aggrecan, the adhesion peptide sequence arginine-glycine-aspartic acid (RGD), or chondroitin sulfate (CS) into the IPN and encapsulate chondrocytes for 6-week studies. RGD and CS were chosen as established standards of comparison to place the efficacy of aggrecan in an appropriate context. This proposed project bridges materials science with biological and clinical application, and if successful, will provide a new class of materials to cartilage tissue engineering and act as a springboard to numerous avenues of future investigation. PUBLIC HEALTH RELEVANCE: Arthritis is the leading cause of disability in the United States, and osteoarthritis affects 21 million Americans at an annual cost to the United States economy exceeding $60 billion. An exciting potential solution is tissue engineering, which aims to replace joint structures ravaged from osteoarthritis. Toward that end, the proposed research will produce a significant new class of biomaterials with superior mechanical integrity for cartilage regeneration.
描述(由申请人提供):本申请的长期目标是设计用于治疗严重骨关节炎的机械可行软骨结构。该提案的总体目标是将最近在产生高韧性互穿网络水凝胶(IPN)和聚集蛋白聚糖的软骨形成能力方面的进展联合收割机以产生用于软骨再生的重要的新类别的生物材料。我们已经采取了两种水凝胶通常用于软骨组织工程,琼脂糖和聚(乙二醇),并开发了一种新的合成方法,联合收割机这两种材料到IPN大大改善了机械性能相比,个别成分。这种新型的IPN水凝胶是通过琼脂糖的物理凝胶化(细胞被封装),然后通过嵌入的聚(乙二醇)二丙烯酸酯(PEG-DA)的光聚合而产生的,在该过程中,我们已经显示细胞保持其活力(在文献中前所未有)。IPN具有接近天然软骨的压缩模量,并且最重要的是,韧性(在压缩下断裂所需的能量)分别比单独的PEG-DA或琼脂糖大5倍和100倍。这一发现的重要性在于,通过创建高韧性的IPN,我们克服了当前水凝胶支架的主要限制,因为高韧性对于在苛刻的环境(如人类膝盖或臀部)中承受断裂至关重要。另一个主要限制是不能为软骨形成提供足够的生化信号。因此,我们提出了一种新的修改的支架,将聚集蛋白聚糖到我们的高韧性IPN。聚集蛋白聚糖最近已被用于单层研究以促进和保持软骨细胞表型,但迄今为止尚未被用作组织工程支架中的软骨形成信号。主要的假设是,使用IPN技术中的这一突破,沿着聚集蛋白聚糖作为生物活性信号,将产生具有与天然人软骨相当的机械完整性的工程化软骨构建体。为了验证这一假设,我们提出了以下具体目标:(1)进一步提高我们的琼脂糖/PEG-DA的高韧性IPN的性能(最近有关IPN的文献表明,与单组分网络相比,韧性增加1000倍是可以实现的),以及(2)将生物活性分子掺入琼脂糖/PEG-DA IPN中。我们将首先改变IPN的组成以最大化其韧性(以防止失效),同时将其刚度保持在天然人软骨的范围内(以提供类似的抗变形性)。使用该组合物,我们将聚集蛋白聚糖、粘附肽序列精氨酸-甘氨酸-天冬氨酸(RGD)或硫酸软骨素(CS)掺入IPN中并包封软骨细胞进行6周研究。选择RGD和CS作为比较的既定标准,以将聚集蛋白聚糖的功效置于适当的背景下。该项目将材料科学与生物和临床应用联系起来,如果成功,将为软骨组织工程提供一类新材料,并作为未来研究的跳板。公共卫生关系:关节炎是美国残疾的主要原因,骨关节炎影响2100万美国人,每年给美国经济造成的损失超过600亿美元。一个令人兴奋的潜在解决方案是组织工程,其目的是取代骨关节炎破坏的关节结构。为此,拟议的研究将产生一个重要的新一类生物材料,具有上级机械完整性的软骨再生。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Using chondroitin sulfate to improve the viability and biosynthesis of chondrocytes encapsulated in interpenetrating network (IPN) hydrogels of agarose and poly(ethylene glycol) diacrylate.
- DOI:10.1007/s10856-011-4499-9
- 发表时间:2012-01
- 期刊:
- 影响因子:3.7
- 作者:Ingavle, Ganesh C.;Dormer, Nathan H.;Gehrke, Stevin H.;Detamore, Michael S.
- 通讯作者:Detamore, Michael S.
The bioactivity of agarose-PEGDA interpenetrating network hydrogels with covalently immobilized RGD peptides and physically entrapped aggrecan.
- DOI:10.1016/j.biomaterials.2014.01.002
- 发表时间:2014-04
- 期刊:
- 影响因子:14
- 作者:Ingavle, Ganesh C.;Gehrke, Stevin H.;Detamore, Michael S.
- 通讯作者:Detamore, Michael S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael S. Detamore其他文献
A Call to Action for Bioengineers and Dental Professionals: Directives for the Future of TMJ Bioengineering
- DOI:
10.1007/s10439-007-9298-6 - 发表时间:
2007-03-29 - 期刊:
- 影响因子:5.400
- 作者:
Michael S. Detamore;Kyriacos A. Athanasiou;Jeremy Mao - 通讯作者:
Jeremy Mao
Comparison of the chondrogenic potential of eBMSCs and eUCMSCs in response to selected peptides and compounds
- DOI:
10.1186/s12917-024-04448-3 - 发表时间:
2025-02-17 - 期刊:
- 影响因子:2.600
- 作者:
Boushra Ajeeb;Emi A. Kiyotake;Peggy A. Keefe;Jennifer Nikki Phillips;Jennifer N. Hatzel;Laurie R. Goodrich;Michael S. Detamore - 通讯作者:
Michael S. Detamore
Regenerative rehabilitation with conductive biomaterials for spinal cord injury
用导电生物材料进行脊髓损伤的再生康复
- DOI:
10.1016/j.actbio.2020.12.021 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:9.600
- 作者:
Emi A. Kiyotake;Michael D. Martin;Michael S. Detamore - 通讯作者:
Michael S. Detamore
Emerging Trends in Biomaterials Research
- DOI:
10.1007/s10439-016-1644-0 - 发表时间:
2016-05-16 - 期刊:
- 影响因子:5.400
- 作者:
Akhilesh K. Gaharwar;Michael S. Detamore;Ali Khademhosseini - 通讯作者:
Ali Khademhosseini
Interface Performance Enhancement in 3D-Printed Biphasic Scaffolds with Interlocking Hourglass Geometry
- DOI:
10.1007/s10439-025-03791-2 - 发表时间:
2025-07-11 - 期刊:
- 影响因子:5.400
- 作者:
David S. Nedrelow;Michael S. Detamore - 通讯作者:
Michael S. Detamore
Michael S. Detamore的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael S. Detamore', 18)}}的其他基金
Gradient-based strategy for osteochondral regeneration
基于梯度的骨软骨再生策略
- 批准号:
8235065 - 财政年份:2010
- 资助金额:
$ 21.45万 - 项目类别:
Gradient-based strategy for osteochondral regeneration
基于梯度的骨软骨再生策略
- 批准号:
8039177 - 财政年份:2010
- 资助金额:
$ 21.45万 - 项目类别:
Gradient-based strategy for osteochondral regeneration
基于梯度的骨软骨再生策略
- 批准号:
8451200 - 财政年份:2010
- 资助金额:
$ 21.45万 - 项目类别:
Gradient-based strategy for osteochondral regeneration
基于梯度的骨软骨再生策略
- 批准号:
8640074 - 财政年份:2010
- 资助金额:
$ 21.45万 - 项目类别:
Gradient-based strategy for osteochondral regeneration
基于梯度的骨软骨再生策略
- 批准号:
7889601 - 财政年份:2010
- 资助金额:
$ 21.45万 - 项目类别:
Solvent-free engineering of a shape-specific osteochondral TMJ condyle
形状特异性骨软骨 TMJ 髁的无溶剂工程
- 批准号:
7532401 - 财政年份:2009
- 资助金额:
$ 21.45万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 21.45万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 21.45万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 21.45万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 21.45万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 21.45万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 21.45万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 21.45万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 21.45万 - 项目类别:














{{item.name}}会员




