Mapping and controlling the segmental dynamic networks of Cyclophilin A as they r

绘制和控制亲环蛋白 A 的分段动态网络

基本信息

  • 批准号:
    8781571
  • 负责人:
  • 金额:
    $ 2.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Current rational, structure based approaches to designing therapeutic protein inhibitors are, largely, limited to targeting the active site of a sigle low energy conformation of a protein. As proteins in solution are continually sampling a structurally heterogeneous range of conformations and allosteric effects have often been shown to influence function distant from the active site, significant improvement to rational drug design could be realized by advancing our understanding of what dynamic motions exist in proteins and how they relate to function. In humans, Cyclophilin A (CypA), a peptidyl-prolyl isomerase, is involved in a range of biological function, including chaperone activity, intercellular signaling, and cytokine signaling, as well as having roles, both cytosolic and extracellularly, in driving development, progression, metastasis, and chemoprotection in a number of cancers, including lung, breast, colorectal, prostate, and liver. This study aims to measure dynamics in CypA and to unravel how these motions communicate throughout the protein to control enzymatic function. More broadly, the proposed work will develop several novel methodologies for studying this crucial dynamics-function relationship, which will be applicable to many protein systems. For the proposed studies, nuclear magnetic resonance (NMR) spectroscopy relaxation experiments will provide atomic resolution measurement of dynamic motions across timescales from picoseconds to milliseconds, including, critically, quantitative measurement of exchange rates near the timescale of catalysis (?s-ms). Additionally, several biophysical techniques, including NMR, ITC, and CD will be used to functionally characterize proteins in vitro. Two novel approaches will then be carried out to probe the dynamics-function relationship in CypA. In the first, residues, distal from the protein active site, will be identified for which dynamics are eiter altered by other CypA mutants or altered during catalysis (with of saturating concentrations of a model substrate), indicating that they are still within the functionally relevant networks of dynamic communication. Single site mutations of these residues will permit alteration of the global dynamics of the protein independent of structural changes to the active site and analysis of the functional implications of given dynamic changes. Multiple 'dynamic mutants', when analyzed in parallel, will reveal the networks through which regions of the protein communicate, as well as the motions involved in regulating function. The second approach will utilize recent advances in NMR data-driven molecular dynamics (MD) simulations to generate conformationally broad ensembles of CypA alone, during catalysis, and with dynamics altering mutations. A novel analytical technique, which allows for identification of partially correlated localization within these MD ensembles, will allow us to map, at high resolution, the specific pathways of communication in CypA. Combined, these complementary approaches will bring us closer to understanding how variable dynamics are communicated and how they relate to function, a critical step in advancing structure/dynamics based drug design.
DESCRIPTION (provided by applicant): Current rational, structure based approaches to designing therapeutic protein inhibitors are, largely, limited to targeting the active site of a sigle low energy conformation of a protein. As proteins in solution are continually sampling a structurally heterogeneous range of conformations and allosteric effects have often been shown to influence function distant from the active site, significant improvement to rational drug design could be realized by advancing our understanding of what dynamic motions exist in proteins and how they relate to function. In humans, Cyclophilin A (CypA), a peptidyl-prolyl isomerase, is involved in a range of biological function, including chaperone activity, intercellular signaling, and cytokine signaling, as well as having roles, both cytosolic and extracellularly, in driving development, progression, metastasis, and chemoprotection in a number of cancers, including lung, breast, colorectal, prostate, and liver. This study aims to measure dynamics in CypA and to unravel how these motions communicate throughout the protein to control enzymatic function. More broadly, the proposed work will develop several novel methodologies for studying this crucial dynamics-function relationship, which will be applicable to many protein systems. For the proposed studies, nuclear magnetic resonance (NMR) spectroscopy relaxation experiments will provide atomic resolution measurement of dynamic motions across timescales from picoseconds to milliseconds, including, critically, quantitative measurement of exchange rates near the timescale of catalysis (?s-ms). Additionally, several biophysical techniques, including NMR, ITC, and CD will be used to functionally characterize proteins in vitro. Two novel approaches will then be carried out to probe the dynamics-function relationship in CypA. In the first, residues, distal from the protein active site, will be identified for which dynamics are eiter altered by other CypA mutants or altered during catalysis (with of saturating concentrations of a model substrate), indicating that they are still within the functionally relevant networks of dynamic communication. Single site mutations of these residues will permit alteration of the global dynamics of the protein independent of structural changes to the active site and analysis of the functional implications of given dynamic changes. Multiple 'dynamic mutants', when analyzed in parallel, will reveal the networks through which regions of the protein communicate, as well as the motions involved in regulating function. The second approach will utilize recent advances in NMR data-driven molecular dynamics (MD) simulations to generate conformationally broad ensembles of CypA alone, during catalysis, and with dynamics altering mutations. A novel analytical technique, which allows for identification of partially correlated localization within these MD ensembles, will allow us to map, at high resolution, the specific pathways of communication in CypA. Combined, these complementary approaches will bring us closer to understanding how variable dynamics are communicated and how they relate to function, a critical step in advancing structure/dynamics based drug design.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Joseph Holliday其他文献

Michael Joseph Holliday的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Allosteric site prediction and transmission of functional residues with atomistic graph analysis
通过原子图分析进行功能残基的变构位点预测和传递
  • 批准号:
    2859072
  • 财政年份:
    2020
  • 资助金额:
    $ 2.92万
  • 项目类别:
    Studentship
Creation of novei anticancer lead compounds targeting the allosteric site of c-Met kinase
创建针对 c-Met 激酶变构位点的新型抗癌先导化合物
  • 批准号:
    16K08327
  • 财政年份:
    2016
  • 资助金额:
    $ 2.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studying how a general allosteric site regulates protein kinase function
研究一般变构位点如何调节蛋白激酶功能
  • 批准号:
    8595027
  • 财政年份:
    2013
  • 资助金额:
    $ 2.92万
  • 项目类别:
Studying how a general allosteric site regulates protein kinase function
研究一般变构位点如何调节蛋白激酶功能
  • 批准号:
    8874171
  • 财政年份:
    2013
  • 资助金额:
    $ 2.92万
  • 项目类别:
Studying how a general allosteric site regulates protein kinase function
研究一般变构位点如何调节蛋白激酶功能
  • 批准号:
    8704718
  • 财政年份:
    2013
  • 资助金额:
    $ 2.92万
  • 项目类别:
STRUC DETERMINATION OF METAL-SUBSTITUTED & ALLOSTERIC SITE VARIANTS OF H INFLU
金属取代物的结构测定
  • 批准号:
    7955561
  • 财政年份:
    2009
  • 资助金额:
    $ 2.92万
  • 项目类别:
EXAMINATION OF ALLOSTERIC SITE OF SEROTONIN TRANSPORTER USING TRANSGENIC MICE
使用转基因小鼠检查血清素转运蛋白的变构位点
  • 批准号:
    7715783
  • 财政年份:
    2008
  • 资助金额:
    $ 2.92万
  • 项目类别:
STRUC DETERMINATION OF METAL-SUBSTITUTED & ALLOSTERIC SITE VARIANTS OF H INFLU
金属取代物的结构测定
  • 批准号:
    7721325
  • 财政年份:
    2008
  • 资助金额:
    $ 2.92万
  • 项目类别:
ALLOSTERIC SITE STRUCTURES OF CARDIOVASCULAR CHANNELS
心血管通道的变构位点结构
  • 批准号:
    7215384
  • 财政年份:
    2007
  • 资助金额:
    $ 2.92万
  • 项目类别:
EXAMINATION OF ALLOSTERIC SITE OF SEROTONIN TRANSPORTER USING TRANSGENIC MICE
使用转基因小鼠检查血清素转运蛋白的变构位点
  • 批准号:
    7562646
  • 财政年份:
    2007
  • 资助金额:
    $ 2.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了