Homeostatic plasticity mechanisms support brain function in vivo

稳态可塑性机制支持体内大脑功能

基本信息

  • 批准号:
    8804113
  • 负责人:
  • 金额:
    $ 8.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-30 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

 DESCRIPTION (provided by applicant): A "homeostatic" mechanism functions to stabilize a key parameter of a system, much like a thermostat functions to stabilize the temperature in a building. In neurons, homeostatic synaptic plasticity is believed to counteract the destabilizing influence of Hebbian-plasticity mechanisms that underlie the activity-dependent refinement of synaptic connectivity. It is postulated that severe human pathologies arise from impaired mechanisms of neuronal homeostasis, including Alzheimer's disease, epilepsy, and Rett syndrome. A significant barrier to progress in this field is our nearly complete lack of insight ino homeostatic plasticity in the intact brain. I propose to study how homeostatic synaptic plasticity supports brain function and behavior in the freely behaving animal. Research in this proposal will focus on synaptic scaling, one of the best-understood mechanisms of neuronal activity homeostasis in vitro. First, work performed during the mentored (K99) component will define a functional role for synaptic scaling in firing rate homeostasis in vivo. To do this, I will utilizeviral-mediated gene transfer to block synaptic scaling in a subset of cortical neurons and test the homeostatic response to long-term sensory deprivation. Next, work performed during the mentored and independent phases will test the hypothesis that sleep is necessary for the expression of homeostatic plasticity in vivo. This will be achieved in two steps: (i) neuromodulatory state-specific and/or circadian patterns will be examined in the normal expression of homeostatic plasticity, and (ii) modulatory states will be disrupted at key times during the emergence of firing rate homeostasis in the freely behaving animal. Finally, during the independent stage (R00), I will assess the core prediction about homeostatic plasticity: those homeostatic mechanisms serve to offset the inherently destabilizing effects of Hebbian plasticity during experience dependent refinement of networks (i.e. learning and development). In this work, I will determine the role of synaptic scaling in a) the development of information transmission in cortical networks, and b) the development of cortex-dependent behavior. The proposed research will be instrumental for the understanding and treatment of disorders that are theorized to involve dysregulated homeostatic plasticity mechanisms. Further, these data will provide novel insight into the effects of sleep deprivation. Finally, this work will identify parameters necessary for homeostatic plasticity in the healthy brain and provide insight into the role of homeostatic plasticity in higher-level brain functions. Candidate's immediate and long-term career goals my graduate training and postdoctoral experience thus far have provided me with a solid background in the methods and concepts related to the research proposed here. My long-term research goal is to understand the role of dysregulated homeostatic mechanisms in neurological disorders and disease, and to unravel the contributions of homeostatic plasticity to normal brain function. In order to complete this work, I will need additional training in a variet of techniques as well as intellectual, professional, and academic guidance. The environment at Brandeis University combined with the dedication and expertise of my mentor, the members of my scientific and career subcommittee, and collaborators provides a perfect base from which to pursue an academic tenure-track position at a research university. The combined training in in vivo molecular biology, computational neuroscience, behavior, and technology development will provide the final elements necessary for me to begin an independent career investigating the role of homeostatic plasticity in normal brain function and disease. Key elements of the research career development plan. The research described in the mentored phase of this application will be performed at Brandeis University under the supervision of Dr. Gina Turrigiano. The Turrigiano laboratory pioneered the study of synaptic scaling and is a recognized leader in the field of homeostatic plasticity. I have assembled a scientific and career advisory subcommittee that is scientifically diverse and dedicated to my development as an independent scientist. Dr. Stephen Van Hooser will provide expertise in animal vision, computational techniques, and in vivo optogenetic manipulations. Dr. Avital Rodal will provide expertise in molecular biology techniques and oversee the interpretation of AMPAR trafficking manipulations. Dr. Eve Marder will provide expertise in computational neuroscience, experimental design, and theory. In addition to this training, I will spend two months in the laboratory of my collaborator, Dr. Timoth Gardner (Boston University) learning cutting-edge technology fabrication necessary for the advancement of in vivo neuroscience. Finally, I will support these activities with regular attendance of international meetings and research seminars to develop an international presence for myself and continue my education in relevant topics. As I begin my career, my committee will provide ongoing support in early career issues, further supporting my transition to independence.
 描述(申请人提供):“稳态”机制起到稳定系统关键参数的作用,就像恒温器起到稳定建筑物温度的作用一样。在神经元中,稳态突触可塑性被认为抵消了Hebbian可塑性机制的不稳定影响,Hebbian可塑性机制是突触连接的活性依赖精细化的基础。据推测,严重的人类病理是由神经元稳态机制受损引起的,包括阿尔茨海默病、癫痫和雷特综合征。在这一领域取得进展的一个重要障碍是我们几乎完全缺乏对完整大脑的自我平衡可塑性的洞察力。我打算研究在行为自由的动物中,稳态突触可塑性如何支持大脑功能和行为。这项建议的研究将集中在突触伸缩,这是体外最了解神经元活动动态平衡的机制之一。首先,在指导(K99)组件期间进行的工作将定义突触调节在体内放电速率动态平衡中的功能作用。为了做到这一点,我将利用病毒介导的基因转移来阻止部分皮质神经元中突触的伸缩,并测试长期感觉剥夺后的动态平衡反应。接下来,在指导阶段和独立阶段进行的工作将检验睡眠对于体内内稳态可塑性的表达是必要的这一假设。这将通过两个步骤来实现:(I)神经调节状态特有的和/或昼夜节律模式将在稳态可塑性的正常表达中被检测,以及(Ii)在自由行为动物的放电率稳态出现的关键时刻,调节状态将被破坏。最后,在独立阶段(R00),我将评估关于稳态可塑性的核心预测:这些稳态机制用于抵消在依赖经验的网络细化(即学习和发展)过程中Hebbian可塑性固有的不稳定影响。在这项工作中,我将确定突触伸缩在a)皮质网络中信息传输的发展中的作用,以及b)皮质依赖行为的发展中的作用。这项拟议的研究将有助于理解和治疗理论上涉及失调的体内平衡可塑性机制的疾病。此外,这些数据将为研究睡眠不足的影响提供新的见解。最后,这项工作将确定健康大脑中平衡可塑性所必需的参数,并提供对平衡可塑性在更高水平大脑功能中的作用的洞察。应聘者的近期和长期职业目标,我的研究生培训和博士后经历,到目前为止为我提供了与这里提出的研究相关的方法和概念的坚实背景。我的长期研究目标是了解失调的稳态机制在神经疾病和疾病中的作用,并揭示稳态可塑性对正常大脑功能的贡献。为了完成这项工作,我需要在各种技术以及智力,专业和学术指导方面的额外培训。布兰迪斯大学的环境加上我的导师、我的科学和职业小组委员会的成员以及合作者的奉献精神和专业知识,为我在研究型大学寻求终身教职提供了完美的基础。体内分子生物学、计算神经科学、行为学和技术开发方面的综合培训将为我开始独立的职业生涯提供必要的最后要素,研究体内平衡可塑性在正常大脑功能和疾病中的作用。研究职业发展计划的关键要素。在本申请的指导阶段中描述的研究将在Brandeis大学进行,由Gina Turrigiano博士监督。特里加诺实验室是突触伸缩研究的先驱,也是稳态可塑性领域公认的领导者。我已经组建了一个科学和职业咨询小组委员会,该委员会在科学上具有多样性,致力于我作为一名独立科学家的发展。史蒂芬·范·胡瑟博士将提供动物视觉、计算技术和活体光基因操作方面的专业知识。阿维塔尔·罗达尔博士将提供分子生物学技术方面的专业知识,并监督AMPAR贩运操纵的解释。伊夫·马德博士将提供计算神经科学、实验设计和理论方面的专业知识。除了这次培训,我还将在我的合作者Timoth Gardner博士(波士顿大学)的实验室里花两个月的时间学习推进体内神经科学所必需的尖端技术制造。最后,我将通过定期参加国际会议和研究研讨会来支持这些活动,以提高我的国际影响力,并继续我在相关主题方面的教育。当我开始我的职业生涯时,我的委员会将在早期职业问题上提供持续的支持,进一步支持我向独立的过渡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith B. Hengen其他文献

An examination of orthographic and phonological processing using the task-choice procedure
使用任务选择程序检查拼写和语音处理
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Kahan;Keith B. Hengen;Katherine M. Mathis
  • 通讯作者:
    Katherine M. Mathis
Circuit-specific selective vulnerability in the DMN persists in the face of widespread amyloid burden
面对广泛的淀粉样蛋白负担,DMN 中的电路特异性选择性脆弱性仍然存在
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samuel J Brunwasser;Clayton A. Farris;Halla Elmore;Eva L. Dyer;Kiran Bhaskaran Nair;Jennifer D. Whitesell;Julie A. Harris;Keith B. Hengen
  • 通讯作者:
    Keith B. Hengen
Transcriptomic cell type structures emin vivo/em neuronal activity across multiple timescales
体内转录组细胞类型结构与多个时间尺度的神经元活动
  • DOI:
    10.1016/j.celrep.2023.112318
  • 发表时间:
    2023-04-25
  • 期刊:
  • 影响因子:
    6.900
  • 作者:
    Aidan Schneider;Mehdi Azabou;Louis McDougall-Vigier;David F. Parks;Sahara Ensley;Kiran Bhaskaran-Nair;Tomasz Nowakowski;Eva L. Dyer;Keith B. Hengen
  • 通讯作者:
    Keith B. Hengen
Neural control of cardiorespiratory function in ground squirrels during hibernation.
冬眠期间地松鼠心肺功能的神经控制。
  • DOI:
    10.1096/fasebj.21.6.a1401
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keith B. Hengen;Stephen M. Johnson;Hannah V. Carey;M. Behan
  • 通讯作者:
    M. Behan
Functional and molecular partitioning of the brain provides neuroprotection to cardiorespiratory nuclei in ground squirrels during hibernation
大脑的功能和分子分区在冬眠期间为地松鼠的心肺核提供神经保护
  • DOI:
    10.1096/fasebj.22.1_supplement.757.2
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Keith B. Hengen;Stephen M. Johnson;Hannah V. Carey;M. Behan
  • 通讯作者:
    M. Behan

Keith B. Hengen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith B. Hengen', 18)}}的其他基金

Robust circuit computation in freely behaving animals.
自由行为动物的鲁棒电路计算。
  • 批准号:
    10053390
  • 财政年份:
    2020
  • 资助金额:
    $ 8.06万
  • 项目类别:
Robust circuit computation in freely behaving animals.
自由行为动物的鲁棒电路计算。
  • 批准号:
    10732419
  • 财政年份:
    2020
  • 资助金额:
    $ 8.06万
  • 项目类别:
Homeostatic Plasticity Mechanisms Support Brain Function in Vivo
稳态可塑性机制支持体内大脑功能
  • 批准号:
    9769909
  • 财政年份:
    2017
  • 资助金额:
    $ 8.06万
  • 项目类别:
Homeostatic Plasticity Mechanisms Support Brain Function in Vivo
稳态可塑性机制支持体内大脑功能
  • 批准号:
    9538322
  • 财政年份:
    2017
  • 资助金额:
    $ 8.06万
  • 项目类别:
Activity dependent plasticity and neuronal spiking homeostasis in vivo
体内活动依赖性可塑性和神经元尖峰稳态
  • 批准号:
    8455441
  • 财政年份:
    2013
  • 资助金额:
    $ 8.06万
  • 项目类别:
Activity dependent plasticity and neuronal spiking homeostasis in vivo
体内活动依赖性可塑性和神经元尖峰稳态
  • 批准号:
    8551406
  • 财政年份:
    2013
  • 资助金额:
    $ 8.06万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 8.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了