Carbon Nanotube Structure-Activity Relationships for Predictive Toxicology
预测毒理学的碳纳米管结构-活性关系
基本信息
- 批准号:8632498
- 负责人:
- 金额:$ 42.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-12-09 至 2018-10-31
- 项目状态:已结题
- 来源:
- 关键词:AddressBiologicalBiological AvailabilityBreathingCaliberCarbon NanotubesCategoriesCellsCellular AssayCharacteristicsChemistryCollaborationsDataDecision MakingDefectDevelopmentDimensionsDiseaseElectronicsElementsEpithelialEpithelial CellsEvaluationFiberFibrosisGenerationsGoalsGranulomatousGroupingGrowth FactorHazardous SubstancesHumanIn VitroInflammationInflammatoryInjuryKnowledgeLengthLibrariesLungMesenchymalMissionModificationMusOccupational SafetyOrganOrganellesOutcomeOxidation-ReductionOxidative StressPathogenesisPlayPneumoniaPolymersProduct ApprovalsProductionPropertyPublic HealthPulmonary FibrosisQuantitative Structure-Activity RelationshipReadingRegulationResearchRisk AssessmentRoleSafetySeriesStructure-Activity RelationshipSurfaceTechnologyTestingToxicologyTubeWorkWorkplacebasebiological adaptation to stressdesigndisabilityhazardin vivoinnovationinterdisciplinary approachmacrophagemulti walled carbon nanotubenanonanotherapeuticnew technologynovelprotective effectpublic health relevanceresponsescreening
项目摘要
Project Summary
There is a fundamental gap in understanding how the physicochemical properties of carbon nanotubes (CNTs)
contribute to hazard generation in the lung. Without this knowledge, it is difficult to evaluate CNT safety in a
predictive and affordable manner. The long-term goal of our multidisciplinary approach is to develop a
predictive toxicological approach for CNT safety assessment in which the physicochemical properties leading
to hazardous interactions at the nano/bio interface can be used to understand the materials' pro-inflammatory
and pro-fibrogenic effects in the lung. The overall objective of this application is to develop a series of single-
wall (SW) and multi-wall carbon nanotube (MWCNT) libraries that can be screened by robust cellular assays to
establish quantitative structure activity relationships (SARs) and hazard ranking of the tubes' potential to
induce pulmonary damage. Our central hypothesis is that tube dimensions (including length, diameter and
aspect ratio), state of dispersion, catalytic surface chemistry, electronic properties and purity play key roles in
initiating cooperative cellular interactions in macrophages and cellular elements from the epithelial-
mesenchymal trophic unit, which are key to the development of development of pulmonary inflammation and
fibrosis. The rationale for the proposed research is that once the quantitative contributions of specific
physicochemical properties to hazard generation is known, it will be possible to use a predictive toxicology
approach for expedited safety assessment of CNTs as well as their safer design. Guided by strong preliminary
data, this hypothesis will be tested by pursuing three specific aims: Aim 1: To develop hazard ranking that
relates the properties of well-prepared and characterized MWCNT and SWCNT libraries to mechanistic
toxicological responses in epithelial cells and macrophages, with a view to develop quantitative structure-
activity relationships (SARs) that predict in vivo injury potential. Aim 2: To develop and validate a predictive
toxicological paradigm for pulmonary hazard potential of well-characterized commercial and purified CNTs,
using in vitro SAR-based hazard ranking and grouping of materials that can also be used towards a tiered risk
assessment approach. Aim 3: To use covalent and non-covalent surface modification to demonstrate the
feasibility of safe-by-design approaches for CNTs, using a predictive toxicological approach. Our approach is
innovative, because it represents a substantive departure from the status quo, namely the use of purified and well-
prepared CNTs that are investigated according to robust toxicological mechanisms that predict the in vivo
toxicological outcome. The proposed research is significant because: (i) it addresses the concern of how to
perform CNT safety assessment using a robust, quantitative scientific platform; (ii) the establishment of a
robust safety platform based on grouping of CNT properties that can be used for control banding and read-
across risk assessment; (iii) the research will develop an affordable and rational scientific platform for
regulatory decision-making and product approval towards the marketplace.
项目概要
对碳纳米管 (CNT) 物理化学性质的理解存在根本性差距
有助于肺部危险的产生。如果没有这些知识,就很难评估碳纳米管的安全性
具有预测性且经济实惠的方式。我们多学科方法的长期目标是开发
碳纳米管安全评估的预测毒理学方法,其中理化性质主导
纳米/生物界面上的危险相互作用可用于了解材料的促炎作用
以及肺部的促纤维化作用。该应用程序的总体目标是开发一系列单
壁(SW)和多壁碳纳米管(MWCNT)库,可以通过强大的细胞测定进行筛选
建立定量结构活动关系 (SAR) 和管子潜在的危险等级
诱发肺部损伤。我们的中心假设是管尺寸(包括长度、直径和
纵横比)、分散状态、催化表面化学、电子性能和纯度起着关键作用
启动巨噬细胞和上皮细胞成分之间的协同细胞相互作用
间充质营养单位,是肺部炎症发展的关键
纤维化。拟议研究的基本原理是,一旦特定的定量贡献
危害产生的物理化学特性已知,可以使用预测毒理学
加速碳纳米管安全评估及其更安全设计的方法。强有力的前期引导
数据,该假设将通过追求三个具体目标来检验: 目标 1:制定危险排名
将精心准备和表征的 MWCNT 和 SWCNT 库的特性与机械性能联系起来
上皮细胞和巨噬细胞的毒理学反应,以开发定量结构-
预测体内潜在损伤的活动关系(SAR)。目标 2:开发并验证预测
充分表征的商业和纯化碳纳米管的肺部危险潜力的毒理学范例,
使用基于体外 SAR 的危险排名和材料分组,也可用于分级风险
评估方法。目标 3:使用共价和非共价表面修饰来证明
使用预测毒理学方法,研究碳纳米管安全设计方法的可行性。我们的方法是
创新,因为它代表了对现状的实质性背离,即使用纯化和良好的
制备的碳纳米管根据预测体内毒理学机制进行研究
毒理学结果。拟议的研究意义重大,因为:(i)它解决了如何
使用强大的定量科学平台进行碳纳米管安全评估; (二) 设立一个
基于 CNT 属性分组的强大安全平台,可用于控制条带和读取
跨风险评估; (iii) 该研究将为以下领域开发一个负担得起且合理的科学平台:
监管决策和产品上市批准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark C. Hersam其他文献
Atomic scale characterization of oxidized epitaxial graphene on SiC substrate
SiC 衬底上氧化外延石墨烯的原子尺度表征
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Md. Zakir Hossain; Maisarah B. A. Razak;Shinya Yoshimoto;Kozo Mukai;Takanori Koitaya;Jun Yoshinobu;Hayato Sone;Sumio Hosaka;Mark C. Hersam;Md. Zakir Hossain;Md. Zakir Hossain,;Md. Zakir Hossain - 通讯作者:
Md. Zakir Hossain
Oxidation of epitaxial graphene on SiC substrate: STM/STS, XPS and Raman characterization
SiC 衬底上外延石墨烯的氧化:STM/STS、XPS 和拉曼表征
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Md. Zakir Hossain; Maisarah B. A. Razak;Shinya Yoshimoto;Kozo Mukai;Takanori Koitaya;Jun Yoshinobu;Hayato Sone;Sumio Hosaka;Mark C. Hersam;Md. Zakir Hossain;Md. Zakir Hossain,;Md. Zakir Hossain;Md. Zakir Hossain - 通讯作者:
Md. Zakir Hossain
High-throughput numerical modeling of the tunable synaptic behavior in 2D MoS2 memristive devices
二维二硫化钼忆阻器中可调突触行为的高通量数值建模
- DOI:
10.1038/s41699-025-00530-y - 发表时间:
2025-02-21 - 期刊:
- 影响因子:8.800
- 作者:
Benjamin Spetzler;Vinod K. Sangwan;Mark C. Hersam;Martin Ziegler - 通讯作者:
Martin Ziegler
Effects of sunlight on the fate of graphene oxide and reduced graphene oxide nanomaterials in the natural surface water
阳光对天然地表水中氧化石墨烯和还原氧化石墨烯纳米材料命运的影响
- DOI:
10.1016/j.scitotenv.2023.162427 - 发表时间:
2023-05-20 - 期刊:
- 影响因子:8.000
- 作者:
Mehnaz Shams;Linda M. Guiney;Mani Ramesh;Mark C. Hersam;Indranil Chowdhury - 通讯作者:
Indranil Chowdhury
Aqueous-Phase Oxidation of Epitaxial Graphene on the Silicon Face of SiC(0001)
SiC(0001)硅面上外延石墨烯的水相氧化
- DOI:
10.1021/jp4092738 - 发表时间:
2014 - 期刊:
- 影响因子:3.7
- 作者:
Md. Zakir Hossain; Maisarah B. A. Razak;Shinya Yoshimoto;Kozo Mukai;Takanori Koitaya;Jun Yoshinobu;Hayato Sone;Sumio Hosaka;Mark C. Hersam - 通讯作者:
Mark C. Hersam
Mark C. Hersam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Defining the biological boundaries to sustain extant life on Mars
定义维持火星现存生命的生物边界
- 批准号:
DP240102658 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Discovery Projects
Advanced Multiscale Biological Imaging using European Infrastructures
利用欧洲基础设施进行先进的多尺度生物成像
- 批准号:
EP/Y036654/1 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Research Grant
Open Access Block Award 2024 - Marine Biological Association
2024 年开放获取区块奖 - 海洋生物学协会
- 批准号:
EP/Z532538/1 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Research Grant
NSF/BIO-DFG: Biological Fe-S intermediates in the synthesis of nitrogenase metalloclusters
NSF/BIO-DFG:固氮酶金属簇合成中的生物 Fe-S 中间体
- 批准号:
2335999 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Standard Grant
DESIGN: Driving Culture Change in a Federation of Biological Societies via Cohort-Based Early-Career Leaders
设计:通过基于队列的早期职业领袖推动生物协会联盟的文化变革
- 批准号:
2334679 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Standard Grant
Collaborative Research: The Interplay of Water Condensation and Fungal Growth on Biological Surfaces
合作研究:水凝结与生物表面真菌生长的相互作用
- 批准号:
2401507 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Standard Grant
REU Site: Modeling the Dynamics of Biological Systems
REU 网站:生物系统动力学建模
- 批准号:
2243955 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411529 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
- 批准号:
2411530 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
- 批准号:
2412551 - 财政年份:2024
- 资助金额:
$ 42.96万 - 项目类别:
Standard Grant