Multimodality image-based assessment system for traumatic brain injury
基于图像的多模态脑外伤评估系统
基本信息
- 批准号:8601141
- 负责人:
- 金额:$ 14.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-01-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccidentsAcuteAddressAlgorithmsAmericanAnatomyAppearanceBehavioralBiological AssayBiological MetamorphosisBlunt TraumaBrainBrain InjuriesBrain imagingChronicClinicalCognitiveCollaborationsComputational algorithmComputer softwareComputing MethodologiesConflict (Psychology)ContractsCraniocerebral TraumaData SetDatabasesDetectionDevelopmentEdemaEncapsulatedEvolutionFutureGroupingGrowthHandHealthHealth Care CostsHemorrhageImageImage AnalysisImageryInfiltrationInjuryInvestigationJointsLeftLesionLocationMeasurementMeasuresMedicalMethodologyMethodsMetricMilitary PersonnelMonitorMotorMultimodal ImagingNeurologicNeuropsychological TestsOperative Surgical ProceduresOutcomeOutcome MeasurePathologyPathology ReportPatient CarePatientsPlayProcessPublic HealthRecording of previous eventsRecovery of FunctionResearch InfrastructureRoleSerumServicesShapesSliceSpecificitySportsStatistical MethodsStructureSystemTechniquesTechnologyTimeTissuesTraumaTraumatic Brain InjuryTumor VolumeUnited StatesVentricularWorkbasebrain remodelingbrain shapeclinical careclinical decision-makingclinically relevantcombatexperiencefallsfunctional declinegray matterimage registrationimaging Segmentationimprovedin vivomembermultidisciplinarymultimodalityneuroimagingneuropsychologicalnovelopen sourceoutcome forecastpopulation basedprognosticpublic health relevanceresponsetooluser friendly softwarewhite matter
项目摘要
DESCRIPTION (provided by applicant): Nearly 1.7 million Americans suffer traumatic brain injury (TBI) annually, which constitutes an important and significant US medical health concern. Although neuroimaging plays an important role in pathology localization and surgical planning, TBI clinical care does not currently take full advantage of neuroimaging computational technology. We propose to develop and validate computational algorithms, based on image segmentation, registration and analysis, which yield quantitative measures to characterize injury, monitor pathology evolution, inform patient prognosis and optimize patient care workflows. This project addresses the current clinical need for informative TBI metrics and the technical need for easy-to-use image analysis tools capable of handling large, heterogenous pathologies that cause severe brain deformations. In Aim 1, we will perform multimodal brain image segmentation for the assessment of acute and chronic TBI, and for measuring longitudinal changes. We will generate quantitative measures of TBI pathology that are based on segmenting lesions, hemorrhages, ventricles, gray matter (GM), white matter (WM) and the brain midline from multimodal image datasets. Clinically, these metrics will be used to quantitatively describe and assess injury at any time point (acute, chronic) and for longitudinal tracking based on pathology type, location and extent. The second aim of this project is to advance the state-of-the-art in image registration for acute and chronic assessment of TBI and for longitudinal change measurement. Deformable image registration aligns corresponding anatomy in images and returns a displacement or flow field encapsulating the deformations between them. We will continue development of "geometric metamorphosis", can register images with significant appearance changes caused by structures that grow or contract, such as TBI pathologies. We will derive novel voxel-wise quantifications and visualizations of pathology infiltration and of brain deformations induced by injury or longitudinal brain changes, both within
lesions and within GM and WM. The third aim is to investigate the ability of our novel TBI metrics, derived from image segmentation and registration, to predict outcome and guide clinical decision making. The focus is on final clinical impact and on evaluating the relationship between brain remodeling (e.g. structural changes) with functional recovery or decline. We will use multivariate statistical methods to evaluate the prognostic abilities of the novel multimodal image-based measures of TBI (volumetric and deformation-based) from Aims 1-2 with respect to the neuropsychological motor, cognitive and behavioral outcome measures available for each TBI patient. Multivariate techniques will also allow investigation into the grouping of patient sub
populations based on statistical features that describe their commonalities or optimally differentiate between them. This will aid in the customization of clinical workflows specific to each patient sub- group. Ultimately, the technical advances being proposed here will yield the ability to use imaging to monitor brain responses to trauma in an integrative, longitudinal fashion, with maximal clinical utility and specificity.
描述(由申请人提供):每年近170万美国人遭受创伤性脑损伤(TBI),这构成了美国重要的医疗健康问题。尽管神经影像学在病理定位和手术计划中发挥着重要作用,但目前TBI临床护理并没有充分利用神经影像学计算技术。我们建议开发和验证基于图像分割、配准和分析的计算算法,从而产生定量测量来表征损伤、监测病理演变、告知患者预后和优化患者护理工作流程。该项目解决了目前临床对信息性脑损伤指标的需求,以及对易于使用的图像分析工具的技术需求,这些工具能够处理导致严重脑变形的大型异质病理。在目标1中,我们将执行多模态脑图像分割,以评估急性和慢性TBI,并测量纵向变化。我们将根据多模态图像数据集对病灶、出血、脑室、灰质(GM)、白质(WM)和脑中线进行分割,生成TBI病理学的定量测量。在临床上,这些指标将用于定量描述和评估任何时间点(急性、慢性)的损伤,并根据病理类型、位置和程度进行纵向跟踪。该项目的第二个目标是推进最先进的图像配准,用于急性和慢性TBI评估和纵向变化测量。可变形图像配准对图像中相应的解剖结构进行对齐,并返回包含它们之间变形的位移或流场。我们将继续开发“几何变态”,可以注册图像与显著的外观变化引起的结构生长或收缩,如创伤性脑损伤病理。我们将获得新的体素量化和可视化病理浸润和脑变形引起的损伤或纵向脑变化,两者都在
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN R AYLWARD其他文献
STEPHEN R AYLWARD的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN R AYLWARD', 18)}}的其他基金
Slicer+PLUS: Collaborative, open-source software for ultrasound analysis
Slicer PLUS:用于超声分析的协作开源软件
- 批准号:
9535994 - 财政年份:2016
- 资助金额:
$ 14.74万 - 项目类别:
Slicer+PLUS: Collaborative, open-source software for ultrasound analysis
Slicer PLUS:用于超声分析的协作开源软件
- 批准号:
9750736 - 财政年份:2016
- 资助金额:
$ 14.74万 - 项目类别:
Automated Assessment of Leptomeningeal Collaterals on CT Angiograms
CT 血管造影上软脑膜循环的自动评估
- 批准号:
8905209 - 财政年份:2015
- 资助金额:
$ 14.74万 - 项目类别:
Automated Assessment of Leptomeningeal Collaterals on CT Angiograms
CT 血管造影上软脑膜循环的自动评估
- 批准号:
9622038 - 财政年份:2015
- 资助金额:
$ 14.74万 - 项目类别:
Accelerating Community-Driven Medical Innovation with VTK
借助 VTK 加速社区驱动的医疗创新
- 批准号:
8652452 - 财政年份:2013
- 资助金额:
$ 14.74万 - 项目类别:
Accelerating Community-Driven Medical Innovation with VTK
借助 VTK 加速社区驱动的医疗创新
- 批准号:
10091434 - 财政年份:2013
- 资助金额:
$ 14.74万 - 项目类别:
In-field FAST Procedure Support and Automation
现场 FAST 程序支持和自动化
- 批准号:
8472102 - 财政年份:2013
- 资助金额:
$ 14.74万 - 项目类别:
Multimodality image-based assessment system for traumatic brain injury
基于图像的多模态脑外伤评估系统
- 批准号:
8453963 - 财政年份:2013
- 资助金额:
$ 14.74万 - 项目类别:
Accelerating Community-Driven Medical Innovation with VTK
借助 VTK 加速社区驱动的医疗创新
- 批准号:
9910382 - 财政年份:2013
- 资助金额:
$ 14.74万 - 项目类别:
Accelerating Community-Driven Medical Innovation with VTK
借助 VTK 加速社区驱动的医疗创新
- 批准号:
8505967 - 财政年份:2013
- 资助金额:
$ 14.74万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 14.74万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 14.74万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 14.74万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 14.74万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 14.74万 - 项目类别:
Research Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 14.74万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 14.74万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 14.74万 - 项目类别:
Standard Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 14.74万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Acute human gingivitis systems biology
人类急性牙龈炎系统生物学
- 批准号:
484000 - 财政年份:2023
- 资助金额:
$ 14.74万 - 项目类别:
Operating Grants














{{item.name}}会员




