Computational neuroeconomic models of addiction-quantifying progression and treatment in opioid use disorder
成瘾量化进展和阿片类药物使用障碍治疗的计算神经经济模型
基本信息
- 批准号:9751824
- 负责人:
- 金额:$ 42.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-06-30
- 项目状态:已结题
- 来源:
- 关键词:Addictive BehaviorAddressAdherenceAffectAreaAttitudeAutomobile DrivingBase of the BrainBehaviorBehavior TherapyBehavioralBiologicalBiologyBrainChoice BehaviorChronic DiseaseClinicalCodeCognitiveCommunitiesDataDecision MakingDevelopmentDiagnosticDropoutEconomicsEffectivenessEtiologyEventFailureFunctional Magnetic Resonance ImagingFunctional disorderFutureGoalsHealthcare SystemsHeroinImpulsivityIndividualInterdisciplinary StudyInterventionInvestigationKnowledgeMeasurementMeasuresMedicalModelingMonitorMorbidity - disease rateNational Institute of Drug AbuseNeurobiologyOccupationalOpiate AddictionOpioidOutcomePathologicPathway interactionsPatientsPharmaceutical PreparationsPharmacologyPhenotypePoliticsPopulationPositioning AttributePredictive ValuePrefrontal CortexProbabilityProcessProviderPsychiatryRecoveryRefractoryRelapseResistanceRewardsRiskSamplingStrategic PlanningSymptomsSystemTestingTimeTreatment EffectivenessTreatment EfficacyVentral StriatumWorkaddictionbasebehavior changebehavioral economicsbrain behaviorcingulate cortexclinical predictorsclinically relevantcognitive functioncomparativecomputational neurosciencecostdrug of abuseglobal healthindividual patientinformation processinginterestmedication-assisted treatmentmortalityneural circuitneurobiological mechanismneuroeconomicsnovelopioid abuseopioid use disorderopioid useroutcome forecastpatient subsetsphenotypic datapredict clinical outcomeprescription opioidprognosticrelating to nervous systemresponsesmartphone Applicationsocialsuccesstheoriestool
项目摘要
Project Summary/Abstract
Opioid use disorder (OUD) is a debilitating chronic disease producing a growing burden on patients, providers,
and the healthcare system. From 2002 to 2013, OUD rates have more than doubled and the number of
individuals seeking treatment for the first time has more than quadrupled, driving unprecedented medical,
scientific, and political interest in the etiology, pathophysiology, and treatment of OUD. Excellent treatments for
opioid addiction exist, but their effectiveness is limited by lack of adherence to medication, treatment dropout,
and relapse. There is scant knowledge about the neural and cognitive factors associated with and perhaps
underlying treatment success or failure. A key goal of the present proposal is to develop reliable objective
predictors of which individuals may need additional intervention and when best to intervene, i.e., when there is
a risk for imminent relapse or treatment dropout. To do so, we propose to develop and test a computational
neuroeconomic approach to quantifying the behavioral and neural features of addiction during OUD treatment.
This computational approach to psychiatry seeks to understand circuit-level information processing in neural
systems and how these mechanisms relate to normal and pathophysiological behavior. We hypothesize that
quantifying individual subject choice behavior - via a longitudinally-sampled array of neuroeconomic decision
tasks and models - provides information to: (1) distinguish relevant clinical populations (patients vs. controls
and patient subgroups); (2) assist clinical prognosis (future treatment efficacy); (3) dynamically track ongoing
clinical status (e.g. likelihood of relapse); and (4) examine the neural basis of behavioral changes in the
recovery process. Specifically, we hypothesize that clinical status during treatment is characterized by the
position and trajectory of individual subjects in a multidimensional space of decision parameters (quantifying
impulsivity, risk tolerance, and ambiguity attitude). To test this hypothesis, we propose to longitudinally track
the behavior and neural activity of patients seeking treatment for OUD. In Aim 1, we test the hypothesis that
single-timepoint multidimensional decision data provides diagnostic and prognostic information, categorizing
different clinical subpopulations (OUD patients vs. controls, treatment responsive vs. treatment refractory
patients). In Aim 2, we test the hypothesis that dynamic multidimensional decision data tracks and predicts
time-varying changes in clinical status, including the probability of future relapse. In Aim 3, we test the
hypothesis that static and dynamic features of multidimensional decision data reflect corresponding features
and changes in integrated value coding in specific neural circuits. Understanding how decision-related
computations reflect clinical status is critical to closing the explanatory gap between biology and behavior in
addiction. If successful, this approach offers both basic scientific and translational benefits: a clearer
understanding of how and why behavior changes in addiction treatment, and easily-implementable tools to
monitor treatment effectiveness and clinical course in individual patients.
项目总结/摘要
阿片类药物使用障碍(OUD)是一种使人衰弱的慢性疾病,给患者、提供者
和医疗保健系统。从2002年到2013年,OUD率增加了一倍多,
第一次寻求治疗的人增加了四倍多,推动了前所未有的医疗,
在病因学,病理生理学和治疗OUD的科学和政治利益。卓越的治疗,
阿片类药物成瘾是存在的,但它们的有效性受到缺乏药物依从性,治疗退出,
和复发关于神经和认知因素的知识很少,
潜在的治疗成功或失败。本提案的一个关键目标是制定可靠的目标,
预测哪些个体可能需要额外干预以及何时最好进行干预,即,当有
即将复发或退出治疗的风险。为此,我们建议开发和测试一个计算
神经经济学方法来量化OUD治疗期间成瘾的行为和神经特征。
这种精神病学的计算方法旨在了解神经元中的电路级信息处理
系统以及这些机制如何与正常和病理生理行为相关。我们假设
量化个体主体选择行为-通过神经经济学决策的连续采样阵列
任务和模型-提供信息以:(1)区分相关临床人群(患者与对照
和患者亚组);(2)辅助临床预后(未来治疗疗效);(3)动态跟踪正在进行的
临床状态(例如复发的可能性);以及(4)检查患者行为变化的神经基础。
恢复过程。具体而言,我们假设治疗期间的临床状态的特征是
在决策参数的多维空间中的个体对象的位置和轨迹(量化
冲动性、风险容忍度和模糊态度)。为了验证这一假设,我们建议纵向跟踪
寻求治疗OUD的患者的行为和神经活动。在目标1中,我们检验了以下假设:
单时间点多维决策数据提供诊断和预后信息,分类
不同的临床亚群(OUD患者与对照,治疗应答与治疗难治
患者)。在目标2中,我们测试了动态多维决策数据跟踪和预测的假设
临床状态的时变变化,包括未来复发的可能性。在目标3中,我们测试
假设多维决策数据静态和动态特征反映了相应的特征
以及特定神经回路中的积分值编码的变化。了解与决策相关的
计算反映临床状态是至关重要的,以缩小生物学和行为之间的解释差距,
成瘾如果成功的话,这种方法提供了基本的科学和转化的好处:
了解成瘾治疗中行为变化的方式和原因,以及易于实施的工具,
监测个别患者的治疗效果和临床过程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PAUL W GLIMCHER其他文献
PAUL W GLIMCHER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PAUL W GLIMCHER', 18)}}的其他基金
SOAR: Smartphones for Opioid Addiction Recovery
SOAR:用于阿片类药物成瘾康复的智能手机
- 批准号:
10280199 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
Role of the Decision-Making Reference Point in Cognition and Psychopathology
决策参考点在认知和精神病理学中的作用
- 批准号:
10372606 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
Role of the Decision-Making Reference Point in Cognition and Psychopathology
决策参考点在认知和精神病理学中的作用
- 批准号:
10543804 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
SOAR: Smartphones for Opioid Addiction Recovery
SOAR:用于阿片类药物成瘾康复的智能手机
- 批准号:
10468772 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
SOAR: Smartphones for Opioid Addiction Recovery
SOAR:用于阿片类药物成瘾康复的智能手机
- 批准号:
10652500 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
Computational neuroeconomic models of addiction: quantifying progression and treatment in opioid use disorder
成瘾的计算神经经济模型:量化阿片类药物使用障碍的进展和治疗
- 批准号:
9448124 - 财政年份:2017
- 资助金额:
$ 42.62万 - 项目类别:
Computational neuroeconomic models of addiction-quantifying progression and treatment in opioid use disorder
成瘾量化进展和阿片类药物使用障碍治疗的计算神经经济模型
- 批准号:
10197068 - 财政年份:2017
- 资助金额:
$ 42.62万 - 项目类别:
Neural Mechanisms of Cost and Benefit Integration During Decision-Making
决策过程中成本与收益整合的神经机制
- 批准号:
8750036 - 财政年份:2014
- 资助金额:
$ 42.62万 - 项目类别:
Intracranial Electrical Control of Cognitive Preferences
认知偏好的颅内电控制
- 批准号:
8583586 - 财政年份:2013
- 资助金额:
$ 42.62万 - 项目类别:
Intracranial Electrical Control of Cognitive Preferences
认知偏好的颅内电控制
- 批准号:
8677858 - 财政年份:2013
- 资助金额:
$ 42.62万 - 项目类别:
相似海外基金
Pharmacy-led Transitions of Care Intervention to Address System-Level Barriers and Improve Medication Adherence in Socioeconomically Disadvantaged Populations
药房主导的护理干预转型,以解决系统层面的障碍并提高社会经济弱势群体的药物依从性
- 批准号:
10594350 - 财政年份:2023
- 资助金额:
$ 42.62万 - 项目类别:
Evaluating Centralizing Interventions to Address Low Adherence to Lung Cancer Screening Follow-up in Decentralized Settings
评估集中干预措施,以解决分散环境中肺癌筛查随访依从性低的问题
- 批准号:
10738120 - 财政年份:2023
- 资助金额:
$ 42.62万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10526768 - 财政年份:2022
- 资助金额:
$ 42.62万 - 项目类别:
Suubi-Mhealth: A mobile health intervention to address depression and improve ART adherence among Youth living with HIV (YLHIV) in Uganda
Suubi-Mhealth:一种移动健康干预措施,旨在解决乌干达艾滋病毒感染者 (YLHIV) 青少年的抑郁症问题并提高抗逆转录病毒疗法的依从性
- 批准号:
10701072 - 财政年份:2022
- 资助金额:
$ 42.62万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10679092 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10432133 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
A behavioral intervention for Black men who have sex with men and live with HIV to address intersectional stigma and improve antiretroviral therapy adherence
针对男男性行为且感染艾滋病毒的黑人男性进行行为干预,以解决交叉耻辱并提高抗逆转录病毒治疗的依从性
- 批准号:
10327065 - 财政年份:2021
- 资助金额:
$ 42.62万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10377366 - 财政年份:2019
- 资助金额:
$ 42.62万 - 项目类别:
Leveraging Technology to Address Access and Adherence to Conventional Hospital-Based Pulmonary Rehabilitation in Veterans with COPD
利用技术解决慢性阻塞性肺病退伍军人接受和坚持传统医院肺康复的问题
- 批准号:
10574496 - 财政年份:2019
- 资助金额:
$ 42.62万 - 项目类别:
Targeted interventions to address the multi-level effects of gender-based violence on PrEP uptake and adherence among adolescent girls and young women in Kenya
有针对性的干预措施,以解决性别暴力对肯尼亚少女和年轻妇女接受和坚持 PrEP 的多层面影响
- 批准号:
9403567 - 财政年份:2017
- 资助金额:
$ 42.62万 - 项目类别: