Advanced Prediction Models to Optimize Treatment and Access for Veterans with Hepatitis C
先进的预测模型可优化丙型肝炎退伍军人的治疗和获取
基本信息
- 批准号:9768346
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2021-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccountingAntiviral AgentsAttitudeBenefits and RisksCategoriesChronic Hepatitis CCicatrixCirrhosisClinicalClinical TrialsConsensusDataDisease ProgressionDisease modelEarly treatmentEconomicsElectronic Health RecordExtrahepaticFaceFutureGuidelinesHealth Services AccessibilityHealthcare SystemsHepatitis CHepatitis C TherapyImprove AccessInterferonsJudgmentKidney DiseasesLifeLiverLiver diseasesMachine LearningMethodsModelingModern MedicineOutcomePatient PreferencesPatientsPharmaceutical PreparationsPopulationProviderPublic HealthResearchResourcesRiskSafetySavingsTechniquesTimeTrainingTreatment ProtocolsUnited States Food and Drug AdministrationVeteransVoiceWorkbasecare seekingclinical practiceclinically relevantcohortconsumer demandcostdeliberative democracydisorder riskeffective therapyelectronic datafallshealth administrationhealth care deliveryhealth care service utilizationhigh riskimplementation strategyinterestmodels and simulationnovel therapeuticsovertreatmentprecision medicinepredictive modelingpreferencerisk prediction modeltreatment optimizationtreatment strategy
项目摘要
Background
Chronic hepatitis C (CHC) is a major public health problem that currently afflicts over 250,000 Veterans. The
Food and Drug Administration (FDA) recently approved several direct acting antiviral agents (DAAs) for the
treatment of CHC. Unlike prior interferon-based treatment regimens for CHC, DAAs are highly effective, have a
favorable safety profile, and are well tolerated, eliciting significant consumer demand. However, DAAs are also
extremely costly, making it difficult for healthcare systems to meet this growing demand from patients.
Healthcare systems also lack a sufficient number of trained providers to treat all patients with CHC within a
short time, further limiting access. But immediate treatment of all infected patients may be not only
prohibitively expensive – it is also unnecessary.
Patients with CHC fall into two broad categories: (1) those with advanced liver disease (cirrhosis, or “scarring”
of the liver) or other extrahepatic manifestations of CHC (e.g., kidney disease) (accounting for ~ 25% of
patients); (2) those without advanced liver disease or extrahepatic manifestations (accounting for ~ 75% -- the
population of interest for this proposal). While data and guidelines are clear about the short-term benefit of
treatment in the former group (i.e., those with cirrhosis), they are less clear about the benefit in the latter group
(those without cirrhosis). In fact, most of these non-cirrhotic, asymptomatic patients progress slowly over years
to decades (low-risk patients) and thus may not require immediate treatment. Others progress more rapidly
and could benefit from immediate treatment. However, clinicians are often uncertain about how to approach
such patients. Current treatment approaches for non-cirrhotic CHC vary substantially across healthcare
systems, owing largely to discrepancies in guidance on when to treat such patients. As a result, treatment is
often driven by a combination of patient preferences, clinician judgment, and drug availability. Veterans who
are at high-risk for disease progression but do not actively seek care may therefore fail to receive potentially
life-saving therapy. In addition, the guidelines continue to change rapidly based on the availability of new
drugs. A systematic, rigorous approach to treatment, one informed by state-of-art prediction modeling
to risk-stratify non-cirrhotic Veterans, could help guide risk-based treatment and mitigate this
healthcare delivery shortcoming.
Objectives
The purpose of this study is to lay the groundwork for risk-based treatment of CHC among non-
cirrhotic Veterans in the Veterans Health Administration (VHA) by: (1) developing accurate, clinically
relevant, and implementable risk prediction models; (2) engaging Veterans to develop consensus on how to
implement risk-based treatment; and (3) evaluating the clinical and economic effects of risk-based treatment.
Methods
In our preliminary work, we demonstrated the feasibility of using a machine-learning (ML) risk prediction model
to identify patients at high risk and low risk for disease progression in a clinical trial cohort. We propose a 4-
year study where we will use VA electronic data from 2004-2014 to adapt, validate and refine this model
among Veterans. We will then engage Veterans, eliciting their preferences and values regarding risk-based
treatment of CHC by applying consensus techniques (e.g., deliberative democracy). Finally, to estimate the
incremental benefit of risk-based treatment over current treatment, we will use simulation modeling.
背景
慢性丙型肝炎(CHC)是一个主要的公共卫生问题,目前困扰着超过25万退伍军人。这个
美国食品和药物管理局(FDA)最近批准了几种直接作用的抗病毒药物(DAA)用于治疗
慢性丙型肝炎的治疗。与以往以干扰素为基础的治疗方案不同,DAA治疗慢性丙型肝炎非常有效,具有
良好的安全配置,并具有良好的耐受性,引发了巨大的消费者需求。然而,DAA也是
成本极其高昂,使得医疗保健系统难以满足患者日益增长的需求。
医疗保健系统也缺乏足够数量的训练有素的提供者来在一年内治疗所有CHC患者
时间短,进一步限制了访问。但对所有感染患者的立即治疗可能不仅仅是
昂贵得令人望而却步--这也是不必要的。
慢性丙型肝炎患者可分为两大类:(1)晚期肝病患者(肝硬变或“疤痕”)。
肝脏)或其他慢性丙型肝炎的肝外表现(如肾脏疾病)(约占25%
患者);(2)无进展性肝病或肝外表现者(占~75%)
这项提案的感兴趣人群)。虽然数据和指导方针清楚地说明了
在前一组(即,肝硬化组)的治疗中,他们对后一组的益处不太清楚
(无肝硬化者)。事实上,这些非肝硬变、无症状的患者中的大多数在多年后进展缓慢。
到几十年(低风险患者),因此可能不需要立即治疗。其他人的进步更快
并且可以从立即治疗中受益。然而,临床医生往往不确定如何处理
这样的病人。目前非肝硬化性慢性丙型肝炎的治疗方法在不同的医疗保健领域有很大的不同
这在很大程度上是由于在指导何时治疗这类患者方面存在差异。因此,治疗是
通常受患者喜好、临床医生判断和药物可获得性的综合影响。退伍军人
处于疾病进展的高风险,但不积极寻求治疗可能因此无法获得潜在的
救命疗法。此外,指导方针继续根据新的可获得性快速变化
毒品。一种系统、严格的治疗方法,由最先进的预测模型提供信息
对非肝硬变退伍军人进行风险分层,有助于指导基于风险的治疗并缓解这种情况
医疗保健服务的缺陷。
目标
本研究的目的是为基于风险的慢性丙型肝炎治疗奠定基础。
退伍军人健康管理局(VHA)中的肝硬变退伍军人:(1)发展准确、临床
相关的、可实施的风险预测模型;(2)让退伍军人就如何
实施基于风险的治疗;以及(3)评估基于风险的治疗的临床和经济效果。
方法
在我们的前期工作中,我们论证了使用机器学习(ML)风险预测模型的可行性
在临床试验队列中确定疾病进展的高风险和低风险患者。我们建议4-
一年的研究,我们将使用2004-2014年的退伍军人管理局电子数据来调整、验证和改进此模型
在退伍军人中。然后,我们将与退伍军人接触,引出他们对基于风险的
通过应用协商一致的技术(例如,协商民主)来处理社区卫生问题。最后,为了估计
基于风险的治疗相对于当前治疗的增量收益,我们将使用模拟建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Akbar K Waljee其他文献
Is there a need for graduate-level programmes in health data science? A perspective from Pakistan
卫生数据科学的研究生课程是否有必要?来自巴基斯坦的视角
- DOI:
10.1016/s2214-109x(22)00459-4 - 发表时间:
2023-01-01 - 期刊:
- 影响因子:18.000
- 作者:
Zahra Hoodbhoy;Rumi Chunara;Akbar K Waljee;Amina AbuBakar;Zainab Samad - 通讯作者:
Zainab Samad
Correction: Use of mobile technology to identify behavioral mechanisms linked to mental health outcomes in Kenya: protocol for development and validation of a predictive model
- DOI:
10.1186/s13104-024-06731-w - 发表时间:
2024-03-12 - 期刊:
- 影响因子:1.700
- 作者:
Willie Njoroge;Rachel Maina;Elena Frank;Lukoye Atwoli;Zhenke Wu;Anthony K Ngugi;Srijan Sen;JianLi Wang;Stephen Wong;Jessica A Baker;Eileen M Weinheimer-Haus;Linda Khakali;Andrew Aballa;James Orwa;Moses K Nyongesa;Jasmit Shah;Akbar K Waljee;Amina Abubakar;Zul Merali - 通讯作者:
Zul Merali
Akbar K Waljee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Akbar K Waljee', 18)}}的其他基金
Advanced Prediction Models to Optimize Treatment and Access for Veterans with Hepatitis C
先进的预测模型可优化丙型肝炎退伍军人的治疗和获取
- 批准号:
10186513 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Risk Stratification and Targeted Therapy for HELP Diseases in Veterans
退伍军人 HELP 疾病的风险分层和靶向治疗
- 批准号:
8396278 - 财政年份:2012
- 资助金额:
-- - 项目类别:
相似海外基金
Development of a new generation of antiviral agents that are effective against drug-resistant viruses and prevent serious illness and sequelae.
开发新一代抗病毒药物,可有效对抗耐药病毒并预防严重疾病和后遗症。
- 批准号:
23K18186 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
A versatile structure-based therapeutic platform for development of VHH-based antitoxin and antiviral agents
一个多功能的基于结构的治疗平台,用于开发基于 VHH 的抗毒素和抗病毒药物
- 批准号:
10560883 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Genetically encoded bicyclic peptide libraries for the discoveryof novel antiviral agents
用于发现新型抗病毒药物的基因编码双环肽库
- 批准号:
10730692 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Design and synthesis of nucleosides to develop antiviral agents and oligonucleotide therapeutics
设计和合成核苷以开发抗病毒药物和寡核苷酸疗法
- 批准号:
21K06459 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetically encoded bicyclic peptide libraries for the discoveryof novel antiviral agents
用于发现新型抗病毒药物的基因编码双环肽库
- 批准号:
10189880 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Computer-aided identification and synthesis of novel broad-spectrum antiviral agents
新型广谱抗病毒药物的计算机辅助鉴定和合成
- 批准号:
2404261 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10222540 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10669717 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Association between sedentary lifestyle and liver cancer development in hepatitis C patients treated with direct-acting antiviral agents
接受直接抗病毒药物治疗的丙型肝炎患者久坐的生活方式与肝癌发展之间的关系
- 批准号:
20K10713 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Develop broad-spectrum antiviral agents against COVID-19 based on innate immune response to SARS-CoV-2 infection
基于对 SARS-CoV-2 感染的先天免疫反应,开发针对 COVID-19 的广谱抗病毒药物
- 批准号:
10174522 - 财政年份:2020
- 资助金额:
-- - 项目类别: