Dynamic-CT-based biomarker for predicting clinical outcome in CRC

基于动态 CT 的生物标志物用于预测 CRC 的临床结果

基本信息

  • 批准号:
    8757781
  • 负责人:
  • 金额:
    $ 22.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Colorectal cancer (CRC) is the second leading cause of cancer death in the United States and is responsible for significant morbidity and mortality. A patient's five-year survival rate depend on the tumor stage at the time of diagnosis, and stage of the tumor plays a substantial role in decision-making regarding treatment. Thus, precise pre-treatment diagnostic evaluation and staging of colorectal cancer are important. In addition, angiogenesis plays an important role in the process of growth and metastasis in CRC and is reported as a useful prognostic marker, similar to many other carcinomas. Thus, in vivo quantification of the tumor angiogenesis rate holds promise in improving the management of CRC. Perfusion computed tomography (PCT) acquires high temporal resolution images, thus enabling evaluation of hemodynamic changes of tissue in vivo by modeling tracer kinetics. PCT has been reported to characterize tumor angiogenesis, and to be a more sensitive imaging biomarker for predicting of overall survival (OS) of CRC patients than conventional tumor staging. In clinical practice, however, the PCT protocol is a trade-off between high-temporal resolution and the total radiation dose required. Thus, the use of dynamic CT imaging derived from four temporal phases, which include pre-contrast, arterial, portal, and delayed phases, is highly desirable, because it is more readily available and yields substantially lower radiation exposure to the patients than that of PCT. However, low temporal resolution in four-phase dynamic CT presents several barriers in modeling tracer kinetics, primarily because of the lack of temporal enhancement information, which limits the ability to obtain reliable physiological information. We will thus develop a novel continuous-time modeling of tracer kinetics without any discretization of the enhancement curves. Such an approach will enable estimation of the time lag between onset time points of input and response enhancements as well as other kinetic parameters in four-phase dynamic CT. We hypothesize that the proposed tracer kinetic model can be an effective imaging biomarker for the risk stratification of recurrence of CRC and for prediction of OS. To explore these hypotheses, the specific aims of the proposed project are (1) Develop a novel single-input continuous-time tracer kinetic model without any discretization to fit temporal enhancement curves in four-phase dynamic CT of the colon, and (2) develop kinetic-model-based imaging biomarkers from four-phase dynamic CT and evaluate their performance in predicting clinical outcome in CRC patients. Successful development of a novel imaging biomarker based on four-phase dynamic CT holds high promise for the development of tailor-made optimal therapy without excessive radiation exposure to the patient.
描述(由申请人提供):结直肠癌(CRC)是美国癌症死亡的第二大原因,并导致显著的发病率和死亡率。患者的五年生存率取决于诊断时的肿瘤分期,肿瘤分期在治疗决策中起着重要作用。因此,准确的治疗前诊断评估和结直肠癌分期是很重要的。此外,血管生成在结直肠癌的生长和转移过程中起着重要作用,并被报道为一种有用的预后标志物,类似于许多其他癌症。因此,在体内定量的肿瘤血管生成率在改善CRC的管理有希望。灌注计算机断层扫描(PCT)采集高时间分辨率图像,从而能够通过模拟示踪剂动力学来评估体内组织的血流动力学变化。PCT已被报道用于表征肿瘤血管生成,并且是比传统肿瘤分期更敏感的预测CRC患者总生存期(OS)的成像生物标志物。然而,在临床实践中,PCT协议是高时间分辨率和所需的总辐射剂量之间的权衡。因此,非常需要使用从四个时间相位(包括造影前相位、动脉相位、门脉相位和延迟相位)导出的动态CT成像,因为它更容易获得,并且对患者产生的辐射暴露比PCT低得多。然而,四相动态CT中的低时间分辨率在示踪剂动力学建模中存在几个障碍,主要是因为缺乏时间增强信息,这限制了获得可靠生理信息的能力。因此,我们将开发一种新的示踪剂动力学的连续时间建模,而没有任何离散化的增强曲线。这种方法将能够估计输入和响应增强的起始时间点之间的时滞以及四相动态CT中的其他动力学参数。我们假设所提出的示踪剂动力学模型可以成为一种有效的成像生物标志物,用于CRC复发的风险分层和OS的预测。为了探索这些假设,所提出的项目的具体目标是:(1)开发一种新颖的单输入连续时间示踪剂动力学模型,而无需任何离散化来拟合 在结肠的四期动态CT中的时间增强曲线,和(2)从四期动态CT开发基于动力学模型的成像生物标志物,并评估它们在预测CRC患者的临床结果中的性能。基于四相动态CT的新型成像生物标志物的成功开发为开发量身定制的最佳治疗而无需对患者进行过度辐射暴露提供了很高的希望。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HIROYUKI YOSHIDA其他文献

HIROYUKI YOSHIDA的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('HIROYUKI YOSHIDA', 18)}}的其他基金

Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
  • 批准号:
    10644030
  • 财政年份:
    2022
  • 资助金额:
    $ 22.71万
  • 项目类别:
Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
  • 批准号:
    10503417
  • 财政年份:
    2022
  • 资助金额:
    $ 22.71万
  • 项目类别:
Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
  • 批准号:
    9764151
  • 财政年份:
    2017
  • 资助金额:
    $ 22.71万
  • 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
  • 批准号:
    10308462
  • 财政年份:
    2017
  • 资助金额:
    $ 22.71万
  • 项目类别:
Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
  • 批准号:
    9288493
  • 财政年份:
    2017
  • 资助金额:
    $ 22.71万
  • 项目类别:
Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
  • 批准号:
    9566185
  • 财政年份:
    2017
  • 资助金额:
    $ 22.71万
  • 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
  • 批准号:
    10054168
  • 财政年份:
    2017
  • 资助金额:
    $ 22.71万
  • 项目类别:
Dynamic-CT-based biomarker for predicting clinical outcome in CRC
基于动态 CT 的生物标志物用于预测 CRC 的临床结果
  • 批准号:
    8893927
  • 财政年份:
    2014
  • 资助金额:
    $ 22.71万
  • 项目类别:
Cloud-computer-aided diagnostic imaging decision support system
云计算机辅助影像诊断决策支持系统
  • 批准号:
    8848046
  • 财政年份:
    2012
  • 资助金额:
    $ 22.71万
  • 项目类别:
Cloud-computer-aided diagnostic imaging decision support system
云计算机辅助影像诊断决策支持系统
  • 批准号:
    8276007
  • 财政年份:
    2012
  • 资助金额:
    $ 22.71万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了