Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
基本信息
- 批准号:9764151
- 负责人:
- 金额:$ 46.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-15 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdoptionAnatomyBig DataBiopsyCancer EtiologyCarcinomaCategoriesCessation of lifeClinicalColonoscopyColorectalColorectal CancerComputed Tomographic ColonographyComputer SimulationDatabasesDecision Support SystemsDetectionDevelopmentDiagnosisDiagnosticEarly DiagnosisEvaluationGoalsGuidelinesHumanImageLesionLocationMachine LearningMedical ImagingMethodsMolecularMulti-Institutional Clinical TrialOpticsPathway interactionsPerformancePhenotypePreventionProblem SolvingProcessPsychological TransferReaderRetrievalSafetySchemeSensitivity and SpecificityShapesSpecificitySystemTestingTextureTimeTrainingUnited Statesadenomabasecancer diagnosiscolorectal cancer preventioncomputer aided detectionconvolutional neural networkcostdeep learningimprovedinnovationminimally invasivemortalityradiologistradiomicsscreeningsuccess
项目摘要
Project Summary/Abstract
Computer-aided detection (CADe) has been shown to increase readers’ sensitivity and reduce inter-observer
variance in detecting abnormalities in medical images. However, they prompt relatively large numbers of false
positives (FPs) that readers find tedious to review and, during this process, the readers can incorrectly dismiss
true lesions prompted correctly to them by CADe systems. Thus, there is a demand for an advanced decision
support system that would provide not only high detection sensitivity, but also high specificity while being able
to explain why a specific location was prompted as a lesion. In this project, we propose to improve the
detection specificity of CADe by deep convolutional neural networks (DCNNs) that can analyze the extrinsic
radiomic phenotype, such as the context of local anatomy, of target lesions, whereas current CADe systems
consider only the intrinsic radiomic phenotype, such as the shape and texture of detected lesions. Further, we
can use DCNNs to provide an explanation of why a specific location was prompted by using anatomically
meaningful object categories with similar-image retrieval of past diagnosed cases. In this project, we will focus
on computed tomographic colonography (CTC), which is a minimally invasive screening method for early
detection of colorectal lesions to prevent colorectal cancer (CRC), which is the second leading cause of cancer
deaths in the United States. Historically, however, only adenomas were believed to be precursors of CRC.
Recent studies have revealed a molecular pathway where also serrated lesions can develop into CRC. Recent
studies have indicated that CTC can detect serrated lesions accurately based upon the phenomenon called
contrast coating. Thus, the goal of this project is to develop a deep radiomic decision support (DeepDES)
system that leverages deep learning for providing high sensitivity and specificity in the detection of colorectal
lesions, in particular, serrated lesions, and for providing diagnostic information that explains why a specific
location was prompted as a lesion to assist readers in assessing detected lesions correctly. To achieve the
goal, we will explore the following specific aims: (1) Develop a radiomic deep-learning (RAID) scheme for the
detection of colorectal lesions, (2) develop a DeepDES system for diagnosis of detected lesions, and (3)
evaluate the clinical benefit of DeepDES system. Successful development of the proposed DeepDES system
will provide an advanced decision support that addresses the current concerns about CADe by yielding both
high detection sensitivity and high specificity while being able to explain why a specific location was prompted
as a target lesion. Broad adoption and use of the DeepDES system will advance the prevention and early
diagnosis of cancer, and thus will ultimately reduce mortality from colorectal cancer in the United States.
项目总结/摘要
计算机辅助检测(CADe)已被证明可以提高读者的灵敏度并减少观察者之间的差异
检测医学图像中的异常的方差。然而,他们提示相对大量的虚假
读者会觉得审查起来很乏味,在此过程中,读者可能会错误地忽略这些积极因素(FP)
CADe系统正确提示的真实病变。因此,需要提前作出决定
不仅提供高检测灵敏度,而且提供高特异性,同时能够
以解释为什么特定位置被提示为病变。在这个项目中,我们建议改善
通过深度卷积神经网络(DCNN)检测CADe的特异性,该网络可以分析外部
放射组学表型,例如靶病变的局部解剖结构的背景,而当前的CADe系统
仅考虑内在放射组学表型,例如检测到的病变的形状和纹理。我们还
可以使用DCNN来解释为什么使用解剖学提示特定位置
有意义的对象类别与过去诊断病例的相似图像检索。在这个项目中,我们将重点
CT结肠成像(CTC),这是一种微创筛查方法,
检测结直肠病变以预防结直肠癌(CRC),这是癌症的第二大原因
死亡在美国。然而,历史上只有腺瘤被认为是CRC的前体。
最近的研究揭示了锯齿状病变也可以发展成CRC的分子途径。最近
研究表明,CTC可以根据称为
对比涂层因此,该项目的目标是开发一个深度放射性决策支持(DeepDES)
该系统利用深度学习在结直肠癌检测中提供高灵敏度和特异性
病变,特别是锯齿状病变,并提供诊断信息,解释为什么特定的
提示位置为病变,以帮助阅片师正确评估检测到的病变。实现
为了实现这一目标,我们将探索以下具体目标:(1)开发一个放射组学深度学习(RAID)方案,
检测结直肠病变,(2)开发DeepDES系统用于诊断检测到的病变,以及(3)
评价DeepDES系统的临床受益。成功开发DeepDES系统
将提供高级决策支持,解决当前对CADe的担忧,
同时能够解释为什么提示特定位置
作为靶病变。DeepDES系统的广泛采用和使用将促进预防和早期
因此,它将最终降低美国结直肠癌的死亡率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HIROYUKI YOSHIDA其他文献
HIROYUKI YOSHIDA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HIROYUKI YOSHIDA', 18)}}的其他基金
Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
- 批准号:
10644030 - 财政年份:2022
- 资助金额:
$ 46.17万 - 项目类别:
Survival prediction in patients with progressive fibrosing interstitial lung disease
进行性纤维化间质性肺病患者的生存预测
- 批准号:
10503417 - 财政年份:2022
- 资助金额:
$ 46.17万 - 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
- 批准号:
10308462 - 财政年份:2017
- 资助金额:
$ 46.17万 - 项目类别:
Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
- 批准号:
9288493 - 财政年份:2017
- 资助金额:
$ 46.17万 - 项目类别:
Deep radiomic decision support system for colorectal cancer
结直肠癌深度放射组学决策支持系统
- 批准号:
9566185 - 财政年份:2017
- 资助金额:
$ 46.17万 - 项目类别:
Spectral precision imaging for early diagnosis of colorectal lesions with CT colonography
CT结肠成像光谱精密成像用于结直肠病变的早期诊断
- 批准号:
10054168 - 财政年份:2017
- 资助金额:
$ 46.17万 - 项目类别:
Dynamic-CT-based biomarker for predicting clinical outcome in CRC
基于动态 CT 的生物标志物用于预测 CRC 的临床结果
- 批准号:
8893927 - 财政年份:2014
- 资助金额:
$ 46.17万 - 项目类别:
Dynamic-CT-based biomarker for predicting clinical outcome in CRC
基于动态 CT 的生物标志物用于预测 CRC 的临床结果
- 批准号:
8757781 - 财政年份:2014
- 资助金额:
$ 46.17万 - 项目类别:
Cloud-computer-aided diagnostic imaging decision support system
云计算机辅助影像诊断决策支持系统
- 批准号:
8848046 - 财政年份:2012
- 资助金额:
$ 46.17万 - 项目类别:
Cloud-computer-aided diagnostic imaging decision support system
云计算机辅助影像诊断决策支持系统
- 批准号:
8276007 - 财政年份:2012
- 资助金额:
$ 46.17万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 46.17万 - 项目类别:
Research Grant