Prioritizing follow-up of GWAS loci using genetic and functional annotation data

使用遗传和功能注释数据优先跟进 GWAS 位点

基本信息

  • 批准号:
    8753749
  • 负责人:
  • 金额:
    $ 22.3万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-08-15 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Although genome-wide association studies (GWAS) have identified thousands of disease susceptibility loci, the underlying genetic structure in these regions is not fully studied and it is likely that the GWAS signal originates from one or many yet unidentified causal variants. In order to localize potential causal variant(s) for further follow-u experiments, fine-mapping studies in large populations are underway. To date, fine-mapping studies have used standard approaches that fail to account for the full array of information currently available such as associations with gene expression (eQTLs) and genomic functional annotation. With the advent of large-scale initiatives such as The Encyclopedia of DNA Elements (ENCODE) and The Cancer Genome Atlas (TCGA), it may be possible to include an additional layer of functional information to fine-mapping studies, enhancing the ability to localize causal variants. We here propose to develop a statistical framework that will incorporate both functional and genetic information. We will build variant-specific priors based on cell-specific functional annotation (e.g. DNase I hypersensitive sites, protein coding), associations with tissue-specific gene expression and correlated phenotypes. We will capitalize on the publically available ENCODE data to acquire functional annotation for each genetic variant. We will then estimate posterior probabilities for each genetic variant based on their derived prior an the evidence for association with the outcome of interest. Such posterior probabilities can then be used to prioritize genetic variants for further follow-up in a laboratory setting. Compared to existing approaches, our proposed method is unique in that it will jointly model internal (e.g. sequencing and gene expression data) and external (e.g. ENCODE, TCGA) sources. It will also allow for multiple causal variants at each region and jointly assess all loci simultaneously, allowing the method to "borrow" information between the regions. To ensure generalizability, we will conduct extensive simulation studies taking numerous possible scenarios into account. We will apply our method on a multi-ethnic breast cancer targeted sequencing dataset of 2,288 breast cancer cases and 2,323 controls for whom we have generated high-depth sequencing data for 12 GWAS-identified breast cancer regions. For a subset of these women, we also have mammographic density (n=1,000) and whole-genome expression data (n=250) in both normal and tumor tissue, allowing us to apply our method and jointly model empirical sequencing, gene expression and phenotype data. We have assembled a multi-disciplinary research team with a track record of producing high-profile publications in fine-mapping, statistical methods, breast cancer epidemiology, population genetics and publicly available software packages for the genetics community. Our work has the potential of bridging the gap between initial screening for regions in the genome that are associated with disease and prioritizing specific variants for further functional analysis. Such methods will have important implications for understanding the underlying biology of disease, a major challenge in the post-GWAS era.
描述(由申请人提供):尽管全基因组关联研究(GWAS)已经确定了数千个疾病易感基因座,但这些基因座中的潜在遗传结构仍不清楚。 然而,GWAS信号区域的研究还没有完全完成,GWAS信号很可能来源于一个或多个尚未鉴定的致病变异体。为了定位潜在的因果变异以用于进一步的后续实验,正在进行大群体中的精细定位研究。迄今为止,精细定位研究使用的标准方法无法解释目前可用的全部信息,如与基因表达(eQTL)和基因组功能注释的关联。随着DNA元素百科全书(ENCODE)和癌症基因组图谱(TCGA)等大规模计划的出现,可能会在精细定位研究中增加一层功能信息,从而增强定位因果变异的能力。在这里,我们建议开发一个统计框架,将功能和遗传信息。我们将基于细胞特异性功能注释(例如DNase I超敏位点,蛋白质编码),与组织特异性基因表达和相关表型的关联建立变体特异性先验。我们将利用实验室可用的ENCODE数据来获得每个遗传变异的功能注释。然后,我们将根据每个遗传变异的推导先验和与感兴趣结果相关的证据来估计其后验概率。这样的后验概率然后可以用于优先考虑遗传变异,以便在实验室环境中进一步随访。与现有方法相比,我们提出的方法是独特的,因为它将联合建模内部(例如测序和基因表达数据)和外部(例如ENCODE,TCGA)来源。它还将允许每个区域的多个因果变异,并同时联合评估所有基因座,允许该方法在区域之间“借用”信息。为了确保普遍性,我们将进行广泛的模拟研究,考虑到许多可能的情况。我们将把我们的方法应用于包含2,288例乳腺癌病例和2,323例对照的多种族乳腺癌靶向测序数据集,我们已经为这些病例和对照生成了12个GWAS识别的乳腺癌区域的高深度测序数据。对于这些女性的一个子集,我们还拥有正常和肿瘤组织中的乳腺摄影密度(n= 1,000)和全基因组表达数据(n=250),使我们能够应用我们的方法并联合建模经验测序,基因表达和表型数据。我们已经组建了一个多学科的研究团队,在精细绘图,统计方法,乳腺癌流行病学,群体遗传学和遗传学界公开可用的软件包方面制作了备受瞩目的出版物。我们的工作有可能弥合基因组中与疾病相关区域的初步筛选与进一步功能分析的特定变体之间的差距。这些方法将对理解疾病的潜在生物学产生重要影响,这是后GWAS时代的一个重大挑战。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sara Lindstroem其他文献

Sara Lindstroem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sara Lindstroem', 18)}}的其他基金

The impact of lifestyle and genetic factors on mammographic density in a cohort of Hispanic women
生活方式和遗传因素对西班牙裔女性群体乳房 X 光密度的影响
  • 批准号:
    10372334
  • 财政年份:
    2022
  • 资助金额:
    $ 22.3万
  • 项目类别:
The impact of lifestyle and genetic factors on mammographic density in a cohort of Hispanic women
生活方式和遗传因素对西班牙裔女性群体乳房 X 光密度的影响
  • 批准号:
    10569013
  • 财政年份:
    2022
  • 资助金额:
    $ 22.3万
  • 项目类别:
Integration of genetic, gene expression and environmental data to inform biological basis of mammographic density
整合遗传、基因表达和环境数据,为乳房 X 光密度的生物学基础提供信息
  • 批准号:
    10117565
  • 财政年份:
    2021
  • 资助金额:
    $ 22.3万
  • 项目类别:
Integration of genetic, gene expression and environmental data to inform biological basis of mammographic density
整合遗传、基因表达和环境数据,为乳房 X 光密度的生物学基础提供信息
  • 批准号:
    10341211
  • 财政年份:
    2021
  • 资助金额:
    $ 22.3万
  • 项目类别:
Integration of genetic, gene expression and environmental data to inform biological basis of mammographic density
整合遗传、基因表达和环境数据,为乳房 X 光密度的生物学基础提供信息
  • 批准号:
    10576856
  • 财政年份:
    2021
  • 资助金额:
    $ 22.3万
  • 项目类别:
Quantifying and Characterizing the shared genetic contribution to common cancers
量化和表征对常见癌症的共同遗传贡献
  • 批准号:
    9270181
  • 财政年份:
    2015
  • 资助金额:
    $ 22.3万
  • 项目类别:
Prioritizing follow-up of GWAS loci using genetic and functional annotation data
使用遗传和功能注释数据优先跟进 GWAS 位点
  • 批准号:
    9251987
  • 财政年份:
    2014
  • 资助金额:
    $ 22.3万
  • 项目类别:
The genetic architecture of breast cancer risk factors and breast cancer
乳腺癌危险因素和乳腺癌的遗传结构
  • 批准号:
    8582185
  • 财政年份:
    2013
  • 资助金额:
    $ 22.3万
  • 项目类别:
GWAS on childhood body fatness as an intermediate phenotype of breast cancer
GWAS 将儿童身体肥胖作为乳腺癌的中间表型
  • 批准号:
    8527746
  • 财政年份:
    2012
  • 资助金额:
    $ 22.3万
  • 项目类别:
GWAS on childhood body fatness as an intermediate phenotype of breast cancer
GWAS 将儿童身体肥胖作为乳腺癌的中间表型
  • 批准号:
    8386863
  • 财政年份:
    2012
  • 资助金额:
    $ 22.3万
  • 项目类别:

相似海外基金

Bridging the Gap: Next-Gen Tools for Accurate Prediction of Disordered Protein Binding Sites
弥合差距:准确预测无序蛋白质结合位点的下一代工具
  • 批准号:
    24K15172
  • 财政年份:
    2024
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Design of protein crystal templates with multiple binding sites for tracking metal complex reactions.
设计具有多个结合位点的蛋白质晶体模板,用于跟踪金属络合物反应。
  • 批准号:
    23K04928
  • 财政年份:
    2023
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamic changes in PIP2 binding sites and their impact on axonal targeting and function of epilepsy-associated KCNQ/Kv7 channels
PIP2 结合位点的动态变化及其对癫痫相关 KCNQ/Kv7 通道的轴突靶向和功能的影响
  • 批准号:
    10744934
  • 财政年份:
    2023
  • 资助金额:
    $ 22.3万
  • 项目类别:
Computational methods to identify small molecule RNA binding sites
识别小分子 RNA 结合位点的计算方法
  • 批准号:
    573688-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 22.3万
  • 项目类别:
    University Undergraduate Student Research Awards
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
  • 批准号:
    10704557
  • 财政年份:
    2022
  • 资助金额:
    $ 22.3万
  • 项目类别:
Identification of potential drug binding sites within allosteric networks in cyclic nucleotide modulated channels
环核苷酸调节通道变构网络内潜在药物结合位点的鉴定
  • 批准号:
    10537846
  • 财政年份:
    2022
  • 资助金额:
    $ 22.3万
  • 项目类别:
Identifying new types of inhibitors in quinone binding sites in photosynthetic enzymes
鉴定光合酶醌结合位点的新型抑制剂
  • 批准号:
    2753921
  • 财政年份:
    2022
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Studentship
Development of broad nanovaccines targeting diverse coronavirus receptor-binding sites
开发针对不同冠状病毒受体结合位点的广泛纳米疫苗
  • 批准号:
    10328140
  • 财政年份:
    2022
  • 资助金额:
    $ 22.3万
  • 项目类别:
Exploiting Water Network Perturbations in Protein Binding Sites
利用蛋白质结合位点的水网络扰动
  • 批准号:
    10621368
  • 财政年份:
    2021
  • 资助金额:
    $ 22.3万
  • 项目类别:
SBIR Phase I: Nonlinear optical method for identifying protein-ligand binding sites
SBIR 第一阶段:识别蛋白质-配体结合位点的非线性光学方法
  • 批准号:
    2111821
  • 财政年份:
    2021
  • 资助金额:
    $ 22.3万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了