Combination Therapy Modeling for M tuberculosis Resistance Suppression and Kill
结核分枝杆菌耐药性抑制和杀灭的联合治疗建模
基本信息
- 批准号:8878433
- 负责人:
- 金额:$ 107.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnimal ModelAnimalsAntibioticsBacteriaCessation of lifeClinicalClinical TrialsCombined AntibioticsCombined Modality TherapyDiseaseDoseDrug CombinationsDrug ExposureDrug PrescriptionsDrug resistance in tuberculosisDrug usageEmployee StrikesEthambutolExhibitsExtreme drug resistant tuberculosisFDA approvedFiberFluoroquinolonesFrequenciesGoalsGrowthHumanHuman bodyIn VitroInfectionInjectableLungMetabolicMicrobeModelingMorbidity - disease rateMulti-Drug ResistanceMusMycobacterium tuberculosisPatient NoncompliancePatientsPerformancePharmaceutical PreparationsPharmacodynamicsPharmacotherapyPhasePopulationPrevalencePulmonary TuberculosisPyrazinamideRecurrent diseaseRegimenRelative (related person)ResistanceRifampinSimulateSpeedSputumSterilizationTestingTimeTreatment ProtocolsTreatment outcomeTuberculosisclinically relevantdosageimprovedin vivo Modelindexinginnovationisoniazidkillingsmathematical modelmortalitynonhuman primatenovelpreventpublic health relevanceresistant strainstandard caretuberculosis drugstuberculosis treatment
项目摘要
DESCRIPTION (provided by applicant): Mycobacterium tuberculosis (Mtb) infects over 2 billion people worldwide and causes 1.4 million deaths annually. The standard treatment for tuberculosis (TB) due to drug-susceptible Mtb consists of 2 months of rifampin (RIF), isoniazid (INH), pyrazinamide (PZA) and ethambutol (EMB) followed by 4 months of RIF and INH. In patients with clinical TB, Mtb exists in 3 metabolic states: log phase growth, semi-dormant acidic phase, and a non-replicating persister (NRP) state. NRP Mtb requires prolonged therapy to kill and is responsible for disease relapse. RIF, INH and EMB kill log phase growth Mtb, while PZA kills acidic phase Mtb. RIF also kills NRP Mtb. Thus, only one drug in the standard regimen is active against acidic phase and NRP Mtb. The prevalence of multidrug resistant Mtb (MDR-TB) is rising due to the use of empiric antibiotic combinations for TB caused by microbes that are resistant to one or more drugs in the regimen a priori, errors in the administration of the medications even under Direct Observed Therapy, and patient non-compliance with the long treatment course. In studies in which new antibiotics with novel mechanisms of action are added to the standard regimen for drug-susceptible Mtb and MDR-TB the time to bacterial sterilization in animal models and the time for sputum conversion to negative in clinical trials are shortened, showing that regimens consisting of the standard first and second line TB drugs are not optimized to kill Mtb. Our long term objective is to develop improved TB regimens. The overarching hypothesis is that TB regimens that are pharmacodynamically (PD) optimized to kill Mtb in all 3 metabolic states and to prevent amplification of less-susceptible bacterial subpopulations will provide a potent shorter course TB regimen that will improve treatment outcomes and reduce resistance. We will test this hypothesis and develop a highly effective short course regimen by completing the following Specific Aims: Specific Aim #1. Simulating in an in vitro hollow fiber infection model (HFIM) the free pulmonary PK profiles for clinically relevant doses of 3 novel TB antibiotics that have activity in all metabolic states, identify the P-indices, drug exposures, and dosing intervals of each drug that PD-optimizes the rapidity and extent of killing of DS-Mtb in each of the 3 metabolic states. Determine if these single drug regimens can prevent resistance. Specific Aim #2. With the HFIM, compare the rates and extents of killing of DS-Mtb in the 3 metabolic states and the effect of these antibiotics on the less susceptible Mtb population when the PD-optimized regimens developed in Specific Aim #1 are used as 2 and 3 drug combinations. Employ innovative mathematical models to identify the dose and frequency of administration of each antibiotic in a 3 drug regimen that is predicted to provide a shorter course, highly effective regimen for the treatment of human TB by optimizing the killing of Mtb in each metabolic state and by preventing resistance. Specific Aim #3. Using the HFIM, characterize the efficacy of the PD-optimized 3 drug regimen on the rate and extent of killing of Mtb in 3 metabolic states for strains that are resistant to 1 of the drug components.
Specific Aim #4. Prospectively validate the performance of the innovative PD-optimized 3 drug regimen in a novel murine model of pulmonary TB in which Mtb in log phase, acidic phase, and NRP state co-exist and in another innovative in vivo model of TB using state-of-the-art dosing algorithms that "humanize" the PK profiles generated in the animals. Use the novel murine model to characterize the relative efficacy of this regimen for the killing of DS- and MDR-TB.
描述(申请人提供):结核分枝杆菌(Mtb)感染全球超过20亿人,每年导致140万人死亡。由于药物敏感性Mtb引起的结核病(TB)的标准治疗包括2个月的利福平(RIF)、异烟肼(INH)、吡嗪酰胺(PZA)和乙胺丁醇(EMB),随后是4个月的RIF和INH。在临床TB患者中,Mtb存在3种代谢状态:对数生长期、半休眠酸性期和非复制持续(NRP)状态。NRP Mtb需要长期治疗才能杀死,并导致疾病复发。RIF、INH和EMB杀死对数生长期Mtb,而PZA杀死酸性相Mtb。RIF也杀死NRP Mtb。因此,标准方案中仅一种药物对酸性相和NRP Mtb有活性。多药耐药结核病(MDR-TB)的流行率正在上升,这是由于使用经验性抗生素组合治疗由对先验方案中的一种或多种药物具有耐药性的微生物引起的结核病,即使在直接观察治疗下也会出现药物给药错误,以及患者不遵守长期治疗过程。在将具有新作用机制的新抗生素添加到药物敏感性结核分枝杆菌和耐多药结核分枝杆菌的标准方案中的研究中,动物模型中细菌灭菌的时间和临床试验中痰液转化为阴性的时间缩短了,表明由标准一线和二线结核分枝杆菌药物组成的方案没有优化以杀死结核分枝杆菌。我们的长期目标是开发更好的结核病治疗方案。总体假设是,经过药效学(PD)优化以杀死所有3种代谢状态的Mtb并防止敏感性较低的细菌亚群扩增的TB方案将提供有效的疗程较短的TB方案,从而改善治疗结果并降低耐药性。我们将测试这一假设,并通过完成以下具体目标来制定一个高效的短期方案:具体目标#1。在体外中空纤维感染模型(HIBR)中模拟3种在所有代谢状态下具有活性的新型TB抗生素的临床相关剂量的游离肺PK特征,确定每种药物的P指数、药物暴露和给药间隔,其PD优化了3种代谢状态中每种状态下DS-Mtb的杀灭速度和程度。确定这些单一药物方案是否可以预防耐药性。具体目标#2当特定目标#1中开发的PD优化方案用作2种和3种药物组合时,比较3种代谢状态下DS-Mtb的杀灭率和程度,以及这些抗生素对易感性较低的Mtb人群的影响。采用创新的数学模型来确定3种药物方案中每种抗生素的给药剂量和频率,预计通过优化每种代谢状态下的Mtb杀灭和预防耐药性,为人类结核病的治疗提供疗程更短、高效的方案。具体目标#3使用阻滞剂,表征PD优化的3种药物方案对耐1种药物组分的菌株在3种代谢状态下杀灭Mtb的速率和程度的有效性。
具体目标#4普罗帕酮验证了创新的PD优化的3种药物方案在肺TB的新型鼠模型中的性能,其中对数期、酸性期和NRP状态的Mtb共存,以及在另一种创新的TB体内模型中使用最先进的给药算法,该算法使动物中产生的PK特征“人源化”。使用新型鼠模型表征该方案杀灭DS-和MDR-TB的相对有效性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Louis Drusano其他文献
George Louis Drusano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Louis Drusano', 18)}}的其他基金
Optimizing Multi-drug Mycobacterium tuberculosis Therapy for Rapid Sterilization and Resistance Suppression
优化结核分枝杆菌多药治疗以实现快速灭菌和耐药性抑制
- 批准号:
10567327 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
Optimizing Combination Therapy to Accelerate Clinical Cure of Tuberculosis
优化联合治疗加速结核病临床治愈
- 批准号:
9529494 - 财政年份:2016
- 资助金额:
$ 107.5万 - 项目类别:
Optimizing Combination Therapy to Accelerate Clinical Cure of Tuberculosis
优化联合治疗加速结核病临床治愈
- 批准号:
9750603 - 财政年份:2016
- 资助金额:
$ 107.5万 - 项目类别:
Optimizing Combination Therapy to Accelerate Clinical Cure of Tuberculosis
优化联合治疗加速结核病临床治愈
- 批准号:
9069215 - 财政年份:2016
- 资助金额:
$ 107.5万 - 项目类别:
Rapid Identification of Optimal Combination Regimens for Pseudomonas aeruginosa
快速鉴定铜绿假单胞菌的最佳组合方案
- 批准号:
9186485 - 财政年份:2015
- 资助金额:
$ 107.5万 - 项目类别:
Rapid Identification of Optimal Combination Regimens for Pseudomonas aeruginosa
快速鉴定铜绿假单胞菌的最佳组合方案
- 批准号:
9009651 - 财政年份:2015
- 资助金额:
$ 107.5万 - 项目类别:
2010 New Antimicrobial Drug Discovery and Development Gordon Research Conference
2010新型抗菌药物发现与开发戈登研究会议
- 批准号:
7906349 - 财政年份:2010
- 资助金额:
$ 107.5万 - 项目类别:
Optimization of Neoglycoside Antibiotics for Nosocomial Pathogens and Select Agen
新糖苷类抗生素治疗院内病原体的优化及药物选择
- 批准号:
8465173 - 财政年份:2010
- 资助金额:
$ 107.5万 - 项目类别:
Optimization of Neoglycoside Antibiotics for Nosocomial Pathogens and Select Agen
新糖苷类抗生素治疗院内病原体的优化及药物选择
- 批准号:
7989055 - 财政年份:2010
- 资助金额:
$ 107.5万 - 项目类别:
Optimization of Neoglycoside Antibiotics for Nosocomial Pathogens and Select Agen
新糖苷类抗生素治疗院内病原体的优化及药物选择
- 批准号:
8075079 - 财政年份:2010
- 资助金额:
$ 107.5万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 107.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists














{{item.name}}会员




