Optimizing Multi-drug Mycobacterium tuberculosis Therapy for Rapid Sterilization and Resistance Suppression
优化结核分枝杆菌多药治疗以实现快速灭菌和耐药性抑制
基本信息
- 批准号:10567327
- 负责人:
- 金额:$ 131.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-01-25 至 2027-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAmino Acyl-tRNA SynthetasesAnimalsAntimicrobial EffectBacteriaBindingBiological AssayC3HeB/FeJ MouseCarbapenemsCatabolismCell WallCellsCholesterolCodeCombination Drug TherapyCombined Modality TherapyComplexDataDrug CombinationsDrug ExposureEquationEvaluationExcisionExperimental DesignsFiberFoundationsHumanImageIn VitroInbred BALB C MiceInfectionKineticsLesionLinkMeasuresMetabolicModelingMonobactamsMusMycobacterium tuberculosisNew AgentsOralOrganismPathologicPathologyPathway interactionsPatientsPenetrationPharmaceutical PreparationsPhasePoisonPopulationPredispositionPrimary InfectionPropertyPublishingRegimenResistanceRestSiteSpatial DistributionSpectrometry, Mass, Matrix-Assisted Laser Desorption-IonizationSpeedSterilizationStructure of parenchyma of lungTestingTimeTissuesTuberculosisValidationWorkWritingbasebeta-Lactamscell killingcohortdata modelingdosagedrug distributionefficacy studyexperimental studyflaskshigh dimensionalityin vivoinhibitorinsightlaser capture microdissectionleucine-tRNAliquid chromatography mass spectroscopymanmass spectrometric imagingmathematical methodsmathematical modelmouse modelnonhuman primatenovelprospectivereceptor bindingresponsesuccesssupercomputertherapy durationtuberculosis treatment
项目摘要
Project Summary/Abstract
In P01 AI123036, we were able to generate an algorithm that ranked single agents for Mycobacterium
tuberculosis (MTB), identified promising 2-drug combinations and, with a completely novel mathematical
approach, identified 3-drug regimens predicted to be significantly better than 2-drug regimens. These predictions
were prospectively validated in a BALB/c model (H37Rv) and in a Non-Human Primate model of MTB (Erdman
strain). In this proposal, we will extend our previous work.
There is a large number of new MTB agents, many with novel mechanisms of action. We have 4 Specific Aims
(SA) that, when complete, will allow us to identify multi-drug combinations that will optimize rate of kill for
organisms in 3 different metabolic states and will suppress resistance emergence.
In the Hollow Fiber Infection Model [HFIM] (SA#1), we will be able to rank new agents on the bases of potency
and physicochemical properties. The HFIM provides insight into the drug’s exposure-response for kill and
resistance suppression. We identified a near optimal 3-drug regimen (PMD/MFX/BDQ). With new single agents,
we can examine substituting a new agent for an older agent AND we can expand the regimens to identify a near-
optimal 4-drug regimen. This will be particularly important for patients with high bacterial burdens.
In SA #2, we will test regimens from SA#1 in two murine models (BALB/c & C3HeB/FeJ mice). These will give
somewhat different information. Both give information regarding kill and resistance suppression. Kramnik mice
have pathology more closely resembling that in humans. We will use Matrix-Assisted Laser Desorption
Ionization-MS Imaging and Laser Capture Microdissection LCMS. This allows identification of spatial distribution
and quantification of drugs. A question regarding cure is how long to wait to sacrifice animals to document
eradication. Some agents (BDQ) have long tissue half-lives. We will document rates of ingress/egress of drugs
into the infection site, allowing determination when animal cohorts may be sacrificed to document eradication.
In SA #3, we will document mechanisms of antimicrobial effect quantitatively. We have generated a first-of-a-
kind dynamic model for PBP-binding in MTB, and will link this to rates of cell kill. We have also developed
AMP/ADP/ATP intracellular assays. These will be employed for agents like diarylquinolines (e.g. BDQ) and PMD
that act as energy poisons (for PMD, this occurs under anaerobic/non-replicative conditions. We will measure
intracellular (MTB) drug concentrations, linking them to effect alone and in combination therapy experiments.
Proposal success rests on modeling of the data. In SA #4, we have written code to extend earlier analyses,
going from 3- to 4-drug regimens. For these high dimensional models, we developed several approaches to
speed up analysis making them computationally tractable. At proposal end, we shall develop a 4-drug algorithm
allowing rapid identification of near optimal regimens that work for both susceptible and less-susceptible
organisms. The algorithm will be general. It will work well for today’s agents but also for agents as discovered.
项目总结/摘要
在P01 AI 123036中,我们能够生成一种算法,
结核病(MTB),确定了有前途的2-药物组合,并与一个全新的数学
方法,确定了3种药物方案,预测显著优于2种药物方案。这些预测
在BALB/c模型(H37 Rv)和MTB的非人灵长类动物模型(Erdman
应变)。在本提案中,我们将扩展我们以前的工作。
存在大量新的MTB药剂,其中许多具有新颖的作用机制。我们有四个具体目标
(SA)完成后,将使我们能够确定多种药物组合,
生物体处于3种不同的代谢状态,并将抑制耐药性的出现。
在中空纤维感染模型中,我们将能够根据效力对新药剂进行排名
和物理化学性质。该抑制剂提供了对药物的杀灭反应的深入了解,
阻力抑制我们确定了一个接近最佳的3种药物方案(PMD/MFX/BDQ)。有了新的单一代理人,
我们可以用一种新的药物代替一种旧的药物,我们可以扩大治疗方案,以确定一种接近-
最佳4药方案。这对于细菌负荷高的患者尤其重要。
在SA#2中,我们将在两种鼠模型(BALB/c和C3 HeB/FeJ小鼠)中测试来自SA#1的方案。这些会给
有些不同的信息。两者都给出了关于杀死和抵抗压制的信息。Kramnik小鼠
其病理学与人类更为相似。我们将使用基质辅助激光解吸
电离-MS成像和激光捕获显微切割LCMS。这允许识别空间分布
和药物的定量。关于治愈的一个问题是要等多久才能用动物献祭来记录
根除一些药剂(BDQ)具有长的组织半衰期。我们将记录药物的进出率
进入感染部位,允许确定何时可以处死动物队列以记录根除。
在SA #3中,我们将定量记录抗菌作用的机制。我们创造了第一个
一种MTB中PBP结合的动态模型,并将其与细胞杀伤率联系起来。我们还开发了
AMP/ADP/ATP细胞内测定。这些将用于二芳基喹啉(例如BDQ)和PMD等药剂
作为能量毒物(对于PMD,这发生在厌氧/非复制条件下。我们将测量
细胞内(MTB)药物浓度,将它们与单独和联合治疗实验中的效果联系起来。
提案的成功取决于数据的建模。在SA #4中,我们编写了代码来扩展先前的分析,
从3种药物方案到4种药物方案。对于这些高维模型,我们开发了几种方法,
加快分析速度,使其在计算上易于处理。在提案结束时,我们将开发一个4药物算法
允许快速识别对易感和不太敏感的人都有效的接近最佳的方案,
有机体算法将是通用的。它不仅适用于当今的代理人,也适用于所发现的代理人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Louis Drusano其他文献
George Louis Drusano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Louis Drusano', 18)}}的其他基金
Optimizing Combination Therapy to Accelerate Clinical Cure of Tuberculosis
优化联合治疗加速结核病临床治愈
- 批准号:
9529494 - 财政年份:2016
- 资助金额:
$ 131.43万 - 项目类别:
Optimizing Combination Therapy to Accelerate Clinical Cure of Tuberculosis
优化联合治疗加速结核病临床治愈
- 批准号:
9750603 - 财政年份:2016
- 资助金额:
$ 131.43万 - 项目类别:
Optimizing Combination Therapy to Accelerate Clinical Cure of Tuberculosis
优化联合治疗加速结核病临床治愈
- 批准号:
9069215 - 财政年份:2016
- 资助金额:
$ 131.43万 - 项目类别:
Rapid Identification of Optimal Combination Regimens for Pseudomonas aeruginosa
快速鉴定铜绿假单胞菌的最佳组合方案
- 批准号:
9186485 - 财政年份:2015
- 资助金额:
$ 131.43万 - 项目类别:
Rapid Identification of Optimal Combination Regimens for Pseudomonas aeruginosa
快速鉴定铜绿假单胞菌的最佳组合方案
- 批准号:
9009651 - 财政年份:2015
- 资助金额:
$ 131.43万 - 项目类别:
Combination Therapy Modeling for M tuberculosis Resistance Suppression and Kill
结核分枝杆菌耐药性抑制和杀灭的联合治疗建模
- 批准号:
8878433 - 财政年份:2014
- 资助金额:
$ 131.43万 - 项目类别:
2010 New Antimicrobial Drug Discovery and Development Gordon Research Conference
2010新型抗菌药物发现与开发戈登研究会议
- 批准号:
7906349 - 财政年份:2010
- 资助金额:
$ 131.43万 - 项目类别:
Optimization of Neoglycoside Antibiotics for Nosocomial Pathogens and Select Agen
新糖苷类抗生素治疗院内病原体的优化及药物选择
- 批准号:
8465173 - 财政年份:2010
- 资助金额:
$ 131.43万 - 项目类别:
Optimization of Neoglycoside Antibiotics for Nosocomial Pathogens and Select Agen
新糖苷类抗生素治疗院内病原体的优化及药物选择
- 批准号:
7989055 - 财政年份:2010
- 资助金额:
$ 131.43万 - 项目类别:
Optimization of Neoglycoside Antibiotics for Nosocomial Pathogens and Select Agen
新糖苷类抗生素治疗院内病原体的优化及药物选择
- 批准号:
8075079 - 财政年份:2010
- 资助金额:
$ 131.43万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 131.43万 - 项目类别:
Continuing Grant














{{item.name}}会员




