Improving Accuracy of Electronic Notes Using A Faster, Simpler Approach
使用更快、更简单的方法提高电子笔记的准确性
基本信息
- 批准号:8805997
- 负责人:
- 金额:$ 15.43万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-30 至 2016-09-29
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DESCRIPTION (provided by applicant): Physician progress notes contain information essential to patient care, including findings from history and physical exam, interpretation of tests, assessment and treatment plans. However in the transition from paper to electronic physician notes, many physicians spend more time creating them, which has led to the use of time-saving measures such as copy/paste and templates that have degraded note accuracy and quality. This threatens the usefulness of notes not only for their most important use-patient care-but also for research, quality improvement, and in supporting reimbursement. To address these problems, we propose a project with the following specific aims: 1. To refine and implement a new voice-generated enhanced electronic note system (VGEENS) integrating voice recognition with natural language processing and links to the electronic medical record (EMR) to improve note accuracy and timeliness. 2. To evaluate VGEENS using a randomized trial with 30 internal medicine physicians in each arm to assess electronic note accuracy, quality, timeliness, and user satisfaction. Intervention physicians will use VGEENS, while the control physicians will continue with note creation as they normally would. This novel approach has the potential to improve note accuracy while reducing delays in making progress notes in EMRs available to other clinicians. It leverages rapidly improving voice recognition and NLP technologies to permit physicians to use a natural, fast method-human voice-to convey their observation and thoughts into the EMR record.
描述(由申请人提供):医师病程记录包含患者护理所必需的信息,包括病史和体格检查结果、测试解释、评估和治疗计划。然而,在从纸质到电子医生笔记的过渡中,许多医生花费更多的时间来创建它们,这导致使用节省时间的措施,例如复制/粘贴和模板,这些措施降低了笔记的准确性和质量。这不仅威胁到了票据的最重要用途--病人护理--而且也威胁到了票据的研究、质量改进和支持报销。为了解决这些问题,我们提出了一个项目,具体目标如下:1。完善和实施一个新的语音生成的增强型电子笔记系统(VGEENS),该系统将语音识别与自然语言处理相结合,并与电子病历(EMR)相链接,以提高笔记的准确性和及时性。2.使用随机试验评价VGEENS,每组30名内科医生,以评估电子记录的准确性、质量、及时性和用户满意度。干预医生将使用VGEENS,而对照医生将继续正常创建注释。这种新颖的方法有可能提高笔记的准确性,同时减少在EMR中向其他临床医生提供进度记录的延迟。它利用快速改进的语音识别和NLP技术,允许医生使用自然,快速的方法-人类语音-将他们的观察和想法传达到EMR记录中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
THOMAS H. PAYNE其他文献
THOMAS H. PAYNE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: High Accuracy Methods for Electronic Structure of Molecules and Materials
职业:分子和材料电子结构的高精度方法
- 批准号:
2145209 - 财政年份:2022
- 资助金额:
$ 15.43万 - 项目类别:
Standard Grant
Using electronic medical record (EMR) data to examine the impact of prenatal drug exposure: Evaluating availability, accuracy and utilty of exposure information
使用电子病历 (EMR) 数据检查产前药物暴露的影响:评估暴露信息的可用性、准确性和实用性
- 批准号:
10511030 - 财政年份:2022
- 资助金额:
$ 15.43万 - 项目类别:
First Principles Prediction of Electronic Material Properties with Unprecedented Accuracy
以前所未有的准确度对电子材料特性进行第一性原理预测
- 批准号:
2281178 - 财政年份:2019
- 资助金额:
$ 15.43万 - 项目类别:
Studentship
Development of interactive electronic medical record's diagnosis accuracy verification system using AI
利用AI开发交互式电子病历诊断准确性验证系统
- 批准号:
19K12867 - 财政年份:2019
- 资助金额:
$ 15.43万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reduced Scaling Many-Body Electronic Structure Methods: Improved Accuracy and Precision
缩小比例的多体电子结构方法:提高准确性和精度
- 批准号:
1800348 - 财政年份:2018
- 资助金额:
$ 15.43万 - 项目类别:
Standard Grant
Development of high-accuracy spatial resolution EELS and analysis of electronic state at interfaces
高精度空间分辨率EELS的开发和界面电子态分析
- 批准号:
17H02739 - 财政年份:2017
- 资助金额:
$ 15.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Accuracy and generalizability of using automated methods for identifying adverse events from electronic health record data
使用自动化方法从电子健康记录数据中识别不良事件的准确性和普遍性
- 批准号:
346592 - 财政年份:2016
- 资助金额:
$ 15.43万 - 项目类别:
Operating Grants
Automated Problem and Allergy Lists Enrichment Based on High Accuracy Information Extraction from the Electronic Health Record
基于电子健康记录中高精度信息提取的自动化问题和过敏列表丰富
- 批准号:
9138574 - 财政年份:2013
- 资助金额:
$ 15.43万 - 项目类别:
Automated Problem and Allergy Lists Enrichment Based on High Accuracy Information Extraction from the Electronic Health Record
基于电子健康记录中高精度信息提取的自动化问题和过敏列表丰富
- 批准号:
9357564 - 财政年份:2013
- 资助金额:
$ 15.43万 - 项目类别:
Evaluating the Accuracy of New Methods of Pharmacosurveillance: Computerized Administrative Data and Electronic Prescribing and Drug Management Systems
评估药物监测新方法的准确性:计算机化管理数据以及电子处方和药物管理系统
- 批准号:
210515 - 财政年份:2010
- 资助金额:
$ 15.43万 - 项目类别:
Operating Grants














{{item.name}}会员




