Predicting AOD Relapse and Treatment Completion from Social Media Use

通过社交媒体使用预测 AOD 复发和治疗完成

基本信息

  • 批准号:
    8827583
  • 负责人:
  • 金额:
    $ 1.02万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Public health research and practice have not yet taken advantage of emerging changes in communication media even though methods and tools to analyze social media interactions have been developed and successfully used in marketing and business to better target prospective customers, tailor products, and predict behavior. This research will adapt these tools and take important steps in advancing science in ways that have potential to be used to improve public health. These adaptations will allow processing and meaningful interpretation of large volumes of social media data generated by individuals in Alcohol or Drug Abuse (AOD) treatment and allow us to address 3 aims. 1) It will allow use of this data source for identifying social media content that might be used to identify individuals who are at high risk for substance use relapse and treatment dropout; 2) It will provide a description of the frequency and patterns of AOD patients' public dialogue on social media with respect to topics such as alcohol and drug information and use, as well as treatment information; and 3) It will help to identify the best social media platforms to reach individuals i AOD treatment. Research staff will recruit 1,000 patients entering drug-free outpatient AOD treatment from 4 community based substance abuse treatment programs (a total of 11 sites). Participants will complete an intake battery and survey of their social media use, report weekly on their alcohol and drug use, give permission to extract treatment entry and discharge data from their clinic records, and to extract data from their Facebook and Twitter accounts. To address the first aim, social media data will be analyzed using Differential Language Analysis (DLA), an open-vocabulary technique that does not rely on pre-conceived theories regarding reasons for relapse and treatment dropout, but allows the data itself to drive an inclusive exploration of language. It finds words, phrases, and topics and presents them using word clouds, but unlike most word clouds, which scale words by their frequency, DLA scales words according to the strength of the relationship between the word or phrase and the variable tested. This open-vocabulary approach has excellent potential to reveal new insights to aid our understanding of risk factors, attitudes, and behaviors associated with relapse and treatment dropout. Eventually this information could be used to generate algorithms in the development of social media applications that would provide additional support for individuals when they are at risk for relapse and treatment dropout, or provide deserved acknowledgement for efforts when patients are fully engaged in treatment. Identifying factors that adversely affect treatment retention and sustained recovery is imperative. Less than 45% of the patients who enter treatment complete it and relapse rates have been reported as high as 92% at 12 months, with most relapsing within 3 months. Identifying social interactions that predict treatment dropout or substance use and automatically sending messages to intervene before that happens could improve and extend the lives of the 22.2 million drug-dependent individuals in the US.
描述(由申请人提供):公共卫生研究和实践尚未利用传播媒体的新兴变化,即使已经开发出分析社交媒体互动的方法和工具,并成功地用于营销和商业,以更好地瞄准潜在客户,定制产品和预测行为。这项研究将调整这些工具,并采取重要步骤,以有可能用于改善公共卫生的方式推进科学。这些调整将允许对酒精或药物滥用(AOD)治疗中的个人产生的大量社交媒体数据进行处理和有意义的解释,并使我们能够实现3个目标。1)它将允许使用该数据源来识别社交媒体内容,这些内容可用于识别物质使用复发和治疗退出的高风险个体; 2)它将描述AOD患者在社交媒体上就酒精和药物信息和使用以及治疗信息等主题进行公开对话的频率和模式;及3)这将有助识别最佳社交媒体平台,以接触接受酒精及非酒精治疗的人士。研究人员将从4个基于社区的药物滥用治疗项目(共11个研究中心)招募1,000名患者,进入无药物门诊AOD治疗。参与者将完成摄入电池和社交媒体使用调查,每周报告他们的酒精和药物使用情况,允许从他们的诊所记录中提取治疗条目和出院数据,并从他们的Facebook和Twitter帐户中提取数据。为了实现第一个目标,社交媒体数据将使用差异语言分析(DLA)进行分析,这是一种开放词汇技术,不依赖于关于复发和治疗退出原因的先入为主的理论,但允许数据本身驱动对语言的包容性探索。它发现单词,短语和主题,并使用单词云呈现它们,但与大多数单词云不同,它通过频率来缩放单词,DLA根据单词或短语与测试变量之间的关系强度来缩放单词。这种开放式词汇方法具有很好的潜力,可以揭示新的见解,帮助我们了解与复发和治疗退出相关的风险因素,态度和行为。最终,这些信息可以用于生成社交媒体应用程序开发中的算法,这些算法可以在个人面临复发和治疗退出风险时为他们提供额外的支持,或者在患者完全参与治疗时为他们的努力提供应有的认可。确定对治疗保留和持续恢复产生不利影响的因素至关重要。不到45%的患者进入治疗完成它和复发率已报告高达92%,在12个月内,大多数复发3个月内。识别预测治疗退出或药物使用的社会互动,并在发生这种情况之前自动发送信息进行干预,可以改善和延长美国2220万药物依赖者的生命。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brenda Curtis其他文献

Brenda Curtis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brenda Curtis', 18)}}的其他基金

Predicting AOD Relapse and Treatment Completion from Social Media Use
通过社交媒体使用预测 AOD 复发和治疗完成
  • 批准号:
    8959982
  • 财政年份:
    2014
  • 资助金额:
    $ 1.02万
  • 项目类别:
Digital Markers in Relapse and Recovery
复发和恢复中的数字标记
  • 批准号:
    10001918
  • 财政年份:
  • 资助金额:
    $ 1.02万
  • 项目类别:
Information Processing and Mechanisms that Underlie Drug Use and Resilience
药物使用和复原力的信息处理和机制
  • 批准号:
    10001920
  • 财政年份:
  • 资助金额:
    $ 1.02万
  • 项目类别:
Reducing HIV Vulnerability in High Risks Populations
降低高危人群的艾滋病毒易感性
  • 批准号:
    10001919
  • 财政年份:
  • 资助金额:
    $ 1.02万
  • 项目类别:
Reducing HIV Vulnerability in High Risks Populations
降低高危人群的艾滋病毒易感性
  • 批准号:
    10267564
  • 财政年份:
  • 资助金额:
    $ 1.02万
  • 项目类别:
Digital Markers in Relapse and Recovery
复发和恢复中的数字标记
  • 批准号:
    10928582
  • 财政年份:
  • 资助金额:
    $ 1.02万
  • 项目类别:
Digital Markers in Relapse and Recovery
复发和恢复中的数字标记
  • 批准号:
    10699665
  • 财政年份:
  • 资助金额:
    $ 1.02万
  • 项目类别:
Changes in Substance Use Following COVID-19: Harnessing Digital Phenotyping
COVID-19 后药物使用的变化:利用数字表型分析
  • 批准号:
    10699666
  • 财政年份:
  • 资助金额:
    $ 1.02万
  • 项目类别:
Digital Phenotyping & Deep Learning: Substance Use Impact on PrEP Adherence among Black Sexual and Gender Minorities
数字表型分析
  • 批准号:
    10928591
  • 财政年份:
  • 资助金额:
    $ 1.02万
  • 项目类别:
Changes in Substance Use Following COVID-19: Harnessing Digital Phenotyping
COVID-19 后药物使用的变化:利用数字表型分析
  • 批准号:
    10267565
  • 财政年份:
  • 资助金额:
    $ 1.02万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.02万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了