Computational Biology in Systems Immunology and Infectious Disease Modeling
系统免疫学和传染病建模中的计算生物学
基本信息
- 批准号:8946462
- 负责人:
- 金额:$ 78.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsBehaviorBindingBinding SitesBiochemicalBiologicalBiological ModelsCellsCellular biologyCommunicationComplexComputational BiologyComputational TechniqueComputer SimulationComputer softwareDataDatabasesDevelopmentDiffusionDrug FormulationsEngineeringGeometryGoalsImageryImmuneImmune responseImmune systemImmunologyIndividualInterventionLaboratoriesLanguageMediatingMethodsModelingModificationMolecularMorphologyOrganPathway interactionsPersonsPhosphorylationProteomicsReactionReceptor SignalingResolutionRiskShapesSignal TransductionSignaling MoleculeSimulateStimulusSystemSystems BiologyT-Cell ReceptorTechnologyTimeTissuesToll-like receptorsTranslatingTranslationsWhole OrganismWorkabstractingbasecell behaviorgraphical user interfaceimprovedinfectious disease modelinformation displayparticlepathogenreceptorresponsesignal processingsimulationsimulation softwaretool
项目摘要
Modern technology now allows the analysis of immune responses and host-pathogen interactions at a global level, across scales ranging from intracellular signaling networks, to individual cell behavior, to the functioning of a tissue, organ, and even the whole organism. The challenge is not only to collect the large amounts of data such methods permit, but also to organize the information in a manner that enhances our understanding of how the immune system operates or pathogens affect their hosts.
Quantitative computer simulations are gaining importance as valuable tools for probing the limits of our understanding of cellular behavior. A major roadblock on the way to successful computational modeling in cell biology has been that the translation of qualitative biological models into computational models required the intervention of engineers/mathematicians as interfaces between biological hypotheses and their theoretical and computational representations. The software being developed by the computational biology group of the Laboratory of Systems Biology eliminates the necessity of having this translation done by a person and thereby reduces the risk of oversimplification of biological mechanisms or the loss of important details in the course of translation by a non-biologist. The software ("Simmune") offers an intuitive graphical interface combined with state-of-the-art simulation technology. We recently added a module that automatically translates pathway models based on bi-molecular interactions into network visualizations that interactively display information about the details of the underlying reactions, such as required phosphorylations or induced molecular state transformations.
Additionally, our software makes it possible to create computer simulations that combine detailed biochemical representation of cellular signaling processes with the spatial resolution necessary to reproduce the effects of localized recruitment and organization of signaling components. We have created a database and database interface system that can couple those computational models to experimental data and externally generated proteomic information.
Our simulation software has the capability to combine biochemically detailed models with simulations that include morphological cellular plasticity. This makes it possible explore the interplay between cellular signaling processes and morphological dynamics that are controlled by those signaling processes while at the same time having a potentially strong influence on them. The ability of our modeling approach to simulate this combination of biochemical and morphological dynamics is based on algorithms we developed that are capable of automatically generating computational representations of intracellular reaction-diffusion networks. The input data provided by the user of our software consist of specifications of interactions between molecular binding sites and the modifications the interacting molecules undergo as a result of the interaction. These inputs - for which our software offers an intuitive graphical interface - are automatically translated into reaction-diffusion networks that reflect the specific geometry of the simulated cells. When the cells change their morphologies in the course of a simulation, the networks can, again automatically, be adjusted to reflect the new cellular shapes.
To improve the possibilities for model exchange between different modeling efforts we contributed to the development of a new standard for encoding multi-component / multi-state molecular complexes in SBML (Systems Biology Markup Language).
Finally, we developed a highly efficient stochastic particle-based simulation algorithm that combines components from Brownian Dynamics approaches and Greens Function Reaction Dynamics to permit large time steps (for maximal efficiency) while maintaining a high degree of precision.
现代技术现在允许在全球水平上分析免疫反应和宿主-病原体相互作用,从细胞内信号网络到单个细胞行为,到组织,器官甚至整个生物体的功能。挑战不仅在于收集这些方法允许的大量数据,而且还在于以一种增强我们对免疫系统如何运作或病原体如何影响其宿主的理解的方式组织这些信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Martin Meier-Schellersheim其他文献
Martin Meier-Schellersheim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Martin Meier-Schellersheim', 18)}}的其他基金
Computational Biology in Systems Immunology and Infectious Disease Modeling
系统免疫学和传染病建模中的计算生物学
- 批准号:
10272150 - 财政年份:
- 资助金额:
$ 78.15万 - 项目类别:
Computational Biology in Systems Immunology and Infectious Disease Modeling
系统免疫学和传染病建模中的计算生物学
- 批准号:
7732724 - 财政年份:
- 资助金额:
$ 78.15万 - 项目类别:
Computational Biology in Systems Immunology and Infectious Disease Modeling
系统免疫学和传染病建模中的计算生物学
- 批准号:
8555987 - 财政年份:
- 资助金额:
$ 78.15万 - 项目类别:
Computational Biology in Systems Immunology and Infectious Disease Modeling
系统免疫学和传染病建模中的计算生物学
- 批准号:
7964719 - 财政年份:
- 资助金额:
$ 78.15万 - 项目类别:
Computational Biology in Systems Immunology and Infectious Disease Modeling
系统免疫学和传染病建模中的计算生物学
- 批准号:
10014158 - 财政年份:
- 资助金额:
$ 78.15万 - 项目类别:
Computational Biology in Systems Immunology and Infectious Disease Modeling
系统免疫学和传染病建模中的计算生物学
- 批准号:
9354856 - 财政年份:
- 资助金额:
$ 78.15万 - 项目类别:
相似海外基金
Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
- 批准号:
10263607 - 财政年份:2021
- 资助金额:
$ 78.15万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
10001503 - 财政年份:2018
- 资助金额:
$ 78.15万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
9789318 - 财政年份:2018
- 资助金额:
$ 78.15万 - 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 78.15万 - 项目类别:
Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
- 批准号:
1548234 - 财政年份:2015
- 资助金额:
$ 78.15万 - 项目类别:
Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1559588 - 财政年份:2015
- 资助金额:
$ 78.15万 - 项目类别:
Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1254117 - 财政年份:2013
- 资助金额:
$ 78.15万 - 项目类别:
Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2012
- 资助金额:
$ 78.15万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2011
- 资助金额:
$ 78.15万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2010
- 资助金额:
$ 78.15万 - 项目类别:
Collaborative Research and Development Grants