CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ

CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织

基本信息

项目摘要

DESCRIPTION (provided by applicant): Communication between cells in the nervous system underlies all complex behaviors, and occurs at specialized regions of the nerve cell called synapses. Synapses work by releasing chemical transmitter from a region called the active zone, which activates a neighboring cell. We propose to characterize the relationship between active zone function and structural organization within frog and mouse neuromuscular synapses. We hypothesize that neuromuscular active zones are assembled from a basic transmitter release building block: the unreliable single-vesicle release site consisting of a docked synaptic vesicle and its associated Ca2+ channels. We further hypothesize that major aspects of synaptic function and presynaptic homeostatic plasticity can be explained by changes in the number and organization of these single-vesicle release sites within active zones. Our approach is characterized by a seamless collaboration between three labs with expertise in computer simulations of cellular physiology (Dittrich lab), synaptic anatomy, physiology, and Ca2+ imaging (Meriney lab), and super-resolution imaging of the number and spatial distribution of synaptic proteins (Blanpied lab). Importantly, as part of this proposal, trainees from all three laboratories will receive crosstraining in each lab. We will use this collaborative approach to develop a comprehensive MCell computer model of the presynaptic transmitter release site that will significantly increase our understanding of the relationship between active zone organization and synaptic function. This insight will not only lead to a better understanding of presynaptic mechanisms of homeostatic plasticity but also aid in our understanding of synaptic diseases, which are known to underlie a large number of neurological disorders. Intellectual Merit: A significant number of neurological diseases are known to affect the synapse by targeting synaptic organization and function. While most research on this important topic has to date focused on postsynaptic adaptations, it has become increasingly clear that presynaptic homeostatic changes are likely to be just as important. Thus, a better understanding of the role of presynaptic structure and organization in synaptic function under both control and disease conditions is needed. Broader Impacts: The MCell model that we will develop will enhance our teaching mission in many ways. It will provide an example of unprecedented scale and realism for the illustration of nerve terminal structure and function. This material will be used in courses and programs at the University of Pittsburgh, the University of Maryland, and Carnegie Mellon University. These include undergraduate and graduate Neuroscience courses, a Computational Biology PhD program that spans PITT and Carnegie Mellon University, summer workshops, and web-based tutorials (www.mcell.org). These simulations will expand previous models that already have been converted into instructive 3D movies, which are routinely shown to a broad range of audiences during open houses, student visits or classroom teaching. This work will also provide source material for teaching examples tailored to high school outreach programs at the Pittsburgh Supercomputing Center, particularly the CMIST program (Computational Modules in Science Teaching, www.cmist.org) of the National Resource for Biomedical Supercomputing (NRBSC) directed by Dr. Dittrich. Our proposed work will have a broad impact on K-12 education, undergraduate teaching and training, graduate and post-graduate training, community outreach, STEM teaching, training at underrepresented minority institutions, and knowledge of synaptic function in the field. Dr. Meriney is a member of the Neuroscience outreach committee at the University of Pittsburgh (PITT), which organizes a variety of community events. Dr. Meriney's laboratory is in the Arts and Sciences College, so the proposed research would contribute to undergraduate teaching via undergraduate research participation in the proposed work, and changes to content for undergraduate courses based on new research insights. Dr. Dittrich will also train undergraduate students in his laboratory as participants in the proposed work. He is training faculty in the NSF funded TECBio REU program at the PITT and typically mentors 1-2 students in computational projects as part of the program. In addition, Dr. Dittrich is a training faculty in the PA Governors School for the Sciences, an intense summer program for talented high school students in Pennsylvania. Drs. Dittrich, Meriney, and Blanpied will bring graduate researchers and postdoctoral fellows into their labs who will directly participate in the proposed experiments, receive cross training in all three laboratories, and receive career training. Lastly, Dr. Ulises Ricoy (an under-represented minority faculty member) from Northern New Mexico College will visit during each summer to learn new research, teaching, and training tools to bring back to underrepresented minority undergraduates at Northern New Mexico College. This will expose these underrepresented minority students to an intense academic research environment and aid in their training and career planning.
描述(由申请人提供):神经系统中细胞之间的通信是所有复杂行为的基础,并且发生在神经细胞的称为突触的专门区域。突触的工作原理是从一个称为活动区的区域释放化学递质,激活邻近的细胞。我们提出的特征活动区功能和结构组织内青蛙和小鼠神经肌肉突触之间的关系。我们假设,神经肌肉活动区组装从一个基本的递质释放积木:不可靠的单囊泡释放网站组成的对接突触囊泡及其相关的Ca 2+通道。我们进一步假设,突触功能和突触前稳态可塑性的主要方面可以解释的数量和组织的变化,这些单囊泡释放网站内的活动区。我们的方法的特点是三个实验室之间的无缝合作,具有计算机模拟细胞生理学(迪特里希实验室),突触解剖学,生理学和Ca 2+成像(Meriney实验室),以及突触蛋白质的数量和空间分布的超分辨率成像(Blanshan实验室)的专业知识。重要的是,作为该提案的一部分,来自所有三个实验室的学员将在每个实验室接受交叉训练。我们将使用这种合作的方法来开发一个全面的MCell计算机模型的突触前递质释放网站,这将显着增加我们的理解活跃区组织和突触功能之间的关系。这种洞察力不仅会带来更好的 这不仅有助于我们理解稳态可塑性的突触前机制,而且有助于我们理解突触疾病,已知突触疾病是大量神经系统疾病的基础。 智力优势:已知大量神经系统疾病通过靶向突触组织和功能来影响突触。虽然大多数关于这一重要主题的研究迄今为止都集中在突触后适应上,但越来越清楚的是,突触前自我平衡的变化可能同样重要。因此,需要更好地理解突触前结构和组织在控制和疾病条件下的突触功能中的作用。 更广泛的影响:我们将开发的MCell模型将在许多方面增强我们的教学使命。它将提供一个前所未有的规模和现实的例子,说明神经末梢的结构和功能。本材料将用于匹兹堡大学、马里兰州大学和卡内基梅隆大学的课程和项目。其中包括本科和研究生神经科学课程,跨越PITT和卡内基梅隆大学的计算生物学博士课程,夏季研讨会和基于网络的教程(www.mcell.org)。这些模拟将扩展以前已经转换成具有指导意义的3D电影的模型,这些电影通常在开放日,学生参观或课堂教学期间向广大观众展示。这项工作还将为匹兹堡超级计算中心的高中外展计划量身定制的教学实例提供源材料,特别是由迪特里希博士指导的国家生物医学超级计算资源(NRBSC)的CMIST计划(科学教学中的计算模块,www.cmist.org)。我们拟议的工作将对K-12教育,本科教学和培训,研究生和研究生培训,社区推广,STEM教学,在代表性不足的少数民族机构的培训以及该领域的突触功能知识产生广泛的影响。Meriney博士是匹兹堡大学(PITT)神经科学外展委员会的成员,该委员会组织了各种社区活动。Meriney博士的实验室位于艺术与科学学院,因此拟议的研究将通过本科生参与拟议工作的研究以及根据新的研究见解改变本科课程内容来促进本科教学。迪特里希博士还将在他的实验室培训本科生作为拟议工作的参与者。他正在PITT的NSF资助的TECBio REU项目中培训教师,并通常指导1-2名学生进行计算项目,作为该项目的一部分。此外,迪特里希博士是宾夕法尼亚州州长科学学校的培训教师,这是宾夕法尼亚州有才华的高中生的暑期项目。迪特里希、梅里尼和布兰尼将把研究生和博士后研究员带到他们的实验室,他们将直接参与拟议的实验,接受所有实验的交叉培训。 三个实验室,并接受职业培训。Ulises Ricoy(代表性不足的少数民族教师)从北方新墨西哥大学将在每年夏天访问学习新的研究,教学和培训工具,带回到代表性不足的少数民族本科生在北方新墨西哥州大学。这将使这些代表性不足的少数民族学生接触到激烈的学术研究环境,并有助于他们的培训和职业规划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas A Blanpied其他文献

Thomas A Blanpied的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas A Blanpied', 18)}}的其他基金

Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
  • 批准号:
    10434923
  • 财政年份:
    2021
  • 资助金额:
    $ 36.32万
  • 项目类别:
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
  • 批准号:
    10313352
  • 财政年份:
    2021
  • 资助金额:
    $ 36.32万
  • 项目类别:
A Lightsheet Microscope for an Established Core Facility
适用于已建立的核心设施的光片显微镜
  • 批准号:
    10172216
  • 财政年份:
    2021
  • 资助金额:
    $ 36.32万
  • 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
  • 批准号:
    9449901
  • 财政年份:
    2016
  • 资助金额:
    $ 36.32万
  • 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
  • 批准号:
    9222595
  • 财政年份:
    2016
  • 资助金额:
    $ 36.32万
  • 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
  • 批准号:
    9214054
  • 财政年份:
    2016
  • 资助金额:
    $ 36.32万
  • 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
  • 批准号:
    8902284
  • 财政年份:
    2014
  • 资助金额:
    $ 36.32万
  • 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
  • 批准号:
    9016561
  • 财政年份:
    2013
  • 资助金额:
    $ 36.32万
  • 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
  • 批准号:
    8488671
  • 财政年份:
    2013
  • 资助金额:
    $ 36.32万
  • 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
  • 批准号:
    8692943
  • 财政年份:
    2013
  • 资助金额:
    $ 36.32万
  • 项目类别:

相似海外基金

Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
  • 批准号:
    EP/Z000882/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
  • 批准号:
    23K11917
  • 财政年份:
    2023
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
  • 批准号:
    10555809
  • 财政年份:
    2023
  • 资助金额:
    $ 36.32万
  • 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
  • 批准号:
    2825967
  • 财政年份:
    2023
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
  • 批准号:
    BB/X013227/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
  • 批准号:
    2235348
  • 财政年份:
    2023
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
  • 批准号:
    10761060
  • 财政年份:
    2023
  • 资助金额:
    $ 36.32万
  • 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
  • 批准号:
    10751126
  • 财政年份:
    2023
  • 资助金额:
    $ 36.32万
  • 项目类别:
Anatomy and functions of LTP interactomes and their relationship to small RNA signals in systemic acquired resistance
LTP相互作用组的解剖和功能及其与系统获得性耐药中小RNA信号的关系
  • 批准号:
    BB/X013049/1
  • 财政年份:
    2023
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了