Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
基本信息
- 批准号:9449901
- 负责人:
- 金额:$ 7.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-15 至 2019-06-30
- 项目状态:已结题
- 来源:
- 关键词:AMPA ReceptorsActinsAction PotentialsAcuteAddressBRAIN initiativeBiochemical ProcessBiosensorBrainBrain DiseasesCalciumCellsCircadian RhythmsCodeCollaborationsColorComplexCyclic AMPCyclic AMP-Dependent Protein KinasesCytoskeletonDataData CollectionDendritic SpinesDetectionDevelopmentDimensionsDiseaseEventExhibitsFluorescence AnisotropyFluorescence PolarizationFluorescence Resonance Energy TransferFoundationsGene ExpressionGoalsHippocampus (Brain)HourImageIn SituIndividualKnowledgeLaboratoriesLightLightingLinkLocationLong-Term PotentiationMAP Kinase GeneMYLK geneMeasurementMeasuresMediatingMembraneMethodologyMethodsMicroscopeMicroscopyMolecularMonitorMonomeric GTP-Binding ProteinsMusNeuronsNoiseOpticsOrganismOutputPathway interactionsPeptide Signal SequencesPeriodicityPhasePhosphotransferasesPhototoxicityPhysiologicalPreparationPropertyReporterResearchResolutionSignal PathwaySignal TransductionSignaling MoleculeSliceSpecimenStimulusSurfaceSynapsesSynaptic plasticityTechnologyTimeValidationWorkcalmodulin-dependent protein kinase IIcircadian pacemakerelectrical propertyexperienceexperimental studyimage reconstructionimaging approachinsightinstrumentmicroscopic imagingmolecular dynamicsneuronal circuitryneuroregulationnoveloptical imagingpolymerizationquantitative imagingreceptorrelating to nervous systemresponserhosensorsuprachiasmatic nucleussynaptic functionsynaptogenesistemporal measurementtooltraffickingvoltageworking group
项目摘要
Deciphering neural coding will require deconstructing the complex and intertwined signaling mechanisms that
drive cellular excitability, synaptic plasticity, and circuit dynamics in the brain. This fundamental objective has
been extremely challenging because unraveling the temporal and spatial interactions of multiple signaling
pathways requires coordinated observation of multiple networks within individual cells and multiple neurons
within intact circuits. Large gaps in knowledge remain because our current tools for tracking the dynamics of
molecular activity are poorly suited for investigating more than one reporter at a time. Here, we propose to
tackle this constraint through development of a novel methodology for simultaneous optical imaging of multiple
quantitative FRET biosensors within single neurons, using FLuorescence Anisotropy Reporters (FLAREs).
Numerous FLAREs targeting canonical signaling pathways, including calcium, cAMP, and the MAPK cascade,
have been constructed in several colors allowing simultaneous imaging of up to three sensors in a single
preparation, either in the same or complimentary pathways. We propose three aims to validate and further
develop this technology to tailor it for studying cells and circuitry in acute and cultured slices from the mouse
brain during neural coding. We will first adapt an optical sectioning microscopy method that is highly
advantageous for fluorescence polarization imaging, known as dual-inverted Selective Plane Illumination
Microscopy (diSPIM), for FLARE imaging. We will also expand the FLARE palette to include key regulators of
synaptic function (Rac, CaMKII) and membrane excitability (voltage). Construction of the FLARE-SPIM
instrument will enable proof of principle studies on two high-value neuronal circuits. First, pushing the limits of
subcellular spatial resolution, FLARE-SPIM imaging will be performed on key signaling molecules in single
dendritic spines in acute hippocampal brain slices during induction of long-term potentiation. Second, pushing
the limits of cellular temporal resolution, we will track the rhythmic fluctuations of voltage, calcium, PKA and
ERK activities during circadian oscillations of neuronal activity exhibited in organotypically-cultured
suprachiasmatic nucleus brain slices. Together, these studies will lay the foundation for systematic exploration
of neuromodulation within cells and neuronal circuitry, providing critical and unprecedented new insights for the
spatial and temporal interactions between signaling pathways. Through collaboration with other Brain Initiative
groups working on similar problems, this foundational work will be scalable to add suites of sensors that
visualize nodes of coordinated cellular activity and reveal and measure the complexity of neural coding within
intact brain circuits.
破译神经编码将需要解构复杂和交织的信号机制,
驱动大脑中的细胞兴奋性、突触可塑性和回路动力学。这一基本目标
这是非常具有挑战性的,因为解开多重信号的时间和空间相互作用
通路需要协调观察单个细胞和多个神经元内的多个网络
在完整的电路中。知识上的巨大差距仍然存在,因为我们目前用于跟踪
分子活性不太适合于一次研究一个以上的报道分子。在此,我们建议
通过开发一种新的方法来解决这一限制,
定量FRET生物传感器内的单个神经元,使用荧光各向异性报告(FLAREs)。
许多FLARE靶向经典信号通路,包括钙、cAMP和MAPK级联,
已经被构造成几种颜色,允许在单个传感器中同时成像多达三个传感器。
准备,无论是在相同的或互补的途径。我们提出了三个目标,以验证和进一步
开发这项技术,使其适用于研究小鼠急性和培养切片中的细胞和电路
大脑在神经编码过程中。我们将首先采用一种光学切片显微镜方法,
这对于荧光偏振成像是有利的,称为双反转选择性平面照明
显微镜检查(diSPIM),用于FLARE成像。我们还将扩展FLARE选项板,以包括以下主要监管机构
突触功能(Rac,CaMKII)和膜兴奋性(电压)。FLARE-SPIM的构建
仪器将能够证明两个高价值的神经元回路的原则研究。第一,挑战
亚细胞空间分辨率,FLARE-SPIM成像将在单个细胞中对关键信号分子进行
长时程增强诱导过程中急性海马脑片中的树突棘。第二,推
细胞时间分辨率的限制,我们将跟踪电压,钙,PKA和
ERK活性在神经元活动的昼夜节律振荡中表现出在器官型培养的
视交叉上核脑切片。这些研究将共同为系统的探索奠定基础
细胞内的神经调节和神经元回路,提供关键和前所未有的新见解,
信号通路之间的空间和时间相互作用。通过与其他脑倡议组织的合作,
工作在类似问题上的小组,这项基础工作将是可扩展的,以添加传感器套件,
可视化协调细胞活动的节点,并揭示和测量神经编码的复杂性,
完整的脑回路
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas A Blanpied其他文献
Thomas A Blanpied的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas A Blanpied', 18)}}的其他基金
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
- 批准号:
10434923 - 财政年份:2021
- 资助金额:
$ 7.52万 - 项目类别:
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
- 批准号:
10313352 - 财政年份:2021
- 资助金额:
$ 7.52万 - 项目类别:
A Lightsheet Microscope for an Established Core Facility
适用于已建立的核心设施的光片显微镜
- 批准号:
10172216 - 财政年份:2021
- 资助金额:
$ 7.52万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
9222595 - 财政年份:2016
- 资助金额:
$ 7.52万 - 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
- 批准号:
9214054 - 财政年份:2016
- 资助金额:
$ 7.52万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
8837233 - 财政年份:2014
- 资助金额:
$ 7.52万 - 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
- 批准号:
8902284 - 财政年份:2014
- 资助金额:
$ 7.52万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
9016561 - 财政年份:2013
- 资助金额:
$ 7.52万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
8488671 - 财政年份:2013
- 资助金额:
$ 7.52万 - 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
- 批准号:
8692943 - 财政年份:2013
- 资助金额:
$ 7.52万 - 项目类别:
相似海外基金
A novel motility system driven by two classes of bacterial actins MreB
由两类细菌肌动蛋白 MreB 驱动的新型运动系统
- 批准号:
22KJ2613 - 财政年份:2023
- 资助金额:
$ 7.52万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The structural basis of plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
342887 - 财政年份:2016
- 资助金额:
$ 7.52万 - 项目类别:
Operating Grants
The structural basis for plasmid segregation by bacterial actins
细菌肌动蛋白分离质粒的结构基础
- 批准号:
278338 - 财政年份:2013
- 资助金额:
$ 7.52万 - 项目类别:
Operating Grants
Cytoplasmic Actins in Maintenance of Muscle Mitochondria
细胞质肌动蛋白在维持肌肉线粒体中的作用
- 批准号:
8505938 - 财政年份:2012
- 资助金额:
$ 7.52万 - 项目类别:
Differential Expression of the Diverse Plant Actins
多种植物肌动蛋白的差异表达
- 批准号:
7931495 - 财政年份:2009
- 资助金额:
$ 7.52万 - 项目类别:
Studies on how actins and microtubules are coordinated and its relevancy.
研究肌动蛋白和微管如何协调及其相关性。
- 批准号:
19390048 - 财政年份:2007
- 资助金额:
$ 7.52万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Interaction of myosin with monomeric actins
肌球蛋白与单体肌动蛋白的相互作用
- 批准号:
5311554 - 财政年份:2001
- 资助金额:
$ 7.52万 - 项目类别:
Priority Programmes
STRUCTURE/INTERACTIONS OF ACTINS AND ACTIN-BINDING PROTEIN
肌动蛋白和肌动蛋白结合蛋白的结构/相互作用
- 批准号:
6316669 - 财政年份:2000
- 资助金额:
$ 7.52万 - 项目类别: