CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ

CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织

基本信息

项目摘要

DESCRIPTION (provided by applicant): Communication between cells in the nervous system underlies all complex behaviors, and occurs at specialized regions of the nerve cell called synapses. Synapses work by releasing chemical transmitter from a region called the active zone, which activates a neighboring cell. We propose to characterize the relationship between active zone function and structural organization within frog and mouse neuromuscular synapses. We hypothesize that neuromuscular active zones are assembled from a basic transmitter release building block: the unreliable single-vesicle release site consisting of a docked synaptic vesicle and its associated Ca2+ channels. We further hypothesize that major aspects of synaptic function and presynaptic homeostatic plasticity can be explained by changes in the number and organization of these single-vesicle release sites within active zones. Our approach is characterized by a seamless collaboration between three labs with expertise in computer simulations of cellular physiology (Dittrich lab), synaptic anatomy, physiology, and Ca2+ imaging (Meriney lab), and super-resolution imaging of the number and spatial distribution of synaptic proteins (Blanpied lab). Importantly, as part of this proposal, trainees from all three laboratories will receive crosstraining in each lab. We will use this collaborative approach to develop a comprehensive MCell computer model of the presynaptic transmitter release site that will significantly increase our understanding of the relationship between active zone organization and synaptic function. This insight will not only lead to a better understanding of presynaptic mechanisms of homeostatic plasticity but also aid in our understanding of synaptic diseases, which are known to underlie a large number of neurological disorders. Intellectual Merit: A significant number of neurological diseases are known to affect the synapse by targeting synaptic organization and function. While most research on this important topic has to date focused on postsynaptic adaptations, it has become increasingly clear that presynaptic homeostatic changes are likely to be just as important. Thus, a better understanding of the role of presynaptic structure and organization in synaptic function under both control and disease conditions is needed. Broader Impacts: The MCell model that we will develop will enhance our teaching mission in many ways. It will provide an example of unprecedented scale and realism for the illustration of nerve terminal structure and function. This material will be used in courses and programs at the University of Pittsburgh, the University of Maryland, and Carnegie Mellon University. These include undergraduate and graduate Neuroscience courses, a Computational Biology PhD program that spans PITT and Carnegie Mellon University, summer workshops, and web-based tutorials (www.mcell.org). These simulations will expand previous models that already have been converted into instructive 3D movies, which are routinely shown to a broad range of audiences during open houses, student visits or classroom teaching. This work will also provide source material for teaching examples tailored to high school outreach programs at the Pittsburgh Supercomputing Center, particularly the CMIST program (Computational Modules in Science Teaching, www.cmist.org) of the National Resource for Biomedical Supercomputing (NRBSC) directed by Dr. Dittrich. Our proposed work will have a broad impact on K-12 education, undergraduate teaching and training, graduate and post-graduate training, community outreach, STEM teaching, training at underrepresented minority institutions, and knowledge of synaptic function in the field. Dr. Meriney is a member of the Neuroscience outreach committee at the University of Pittsburgh (PITT), which organizes a variety of community events. Dr. Meriney's laboratory is in the Arts and Sciences College, so the proposed research would contribute to undergraduate teaching via undergraduate research participation in the proposed work, and changes to content for undergraduate courses based on new research insights. Dr. Dittrich will also train undergraduate students in his laboratory as participants in the proposed work. He is training faculty in the NSF funded TECBio REU program at the PITT and typically mentors 1-2 students in computational projects as part of the program. In addition, Dr. Dittrich is a training faculty in the PA Governors School for the Sciences, an intense summer program for talented high school students in Pennsylvania. Drs. Dittrich, Meriney, and Blanpied will bring graduate researchers and postdoctoral fellows into their labs who will directly participate in the proposed experiments, receive cross training in all three laboratories, and receive career training. Lastly, Dr. Ulises Ricoy (an under-represented minority faculty member) from Northern New Mexico College will visit during each summer to learn new research, teaching, and training tools to bring back to underrepresented minority undergraduates at Northern New Mexico College. This will expose these underrepresented minority students to an intense academic research environment and aid in their training and career planning.
描述(申请人提供):神经系统中细胞之间的交流是所有复杂行为的基础,发生在神经细胞的特殊区域,称为突触。突触的工作原理是从被称为活动区的区域释放化学递质,激活邻近的细胞。我们建议描述青蛙和小鼠神经肌肉突触的活动区功能和结构组织之间的关系。我们假设神经肌肉活动区是由一个基本的递质释放构件组成的:不可靠的单囊泡释放部位,由一个停靠的突触小泡及其相关的钙通道组成。我们进一步假设,突触功能和突触前稳态可塑性的主要方面可以通过活动区内这些单囊释放部位的数量和组织的变化来解释。我们的方法的特点是三个实验室之间的无缝合作,这些实验室拥有计算机模拟细胞生理学(Dittrich实验室)、突触解剖学、生理学和钙离子成像(Meriney实验室)以及突触蛋白数量和空间分布的超分辨率成像(Blanpie实验室)方面的专业知识。重要的是,作为这项提议的一部分,来自所有三个实验室的受训人员将在每个实验室接受交叉培训。我们将使用这种合作的方法来开发一个全面的突触前递质释放部位的Mcell计算机模型,这将显著增加我们对活动区组织和突触功能之间的关系的理解。这种洞察力不仅会带来更好的 了解自稳可塑性的突触前机制也有助于我们理解突触疾病,这些疾病是许多神经疾病的基础。 智力价值:已知有相当数量的神经疾病通过影响突触的组织和功能来影响突触。虽然到目前为止,关于这一重要主题的大多数研究都集中在突触后适应上,但越来越清楚的是,突触前的稳态变化可能也同样重要。因此,需要更好地了解在控制和疾病条件下突触前结构和组织在突触功能中的作用。 更广泛的影响:我们将开发的Mcell模型将在许多方面增强我们的教学使命。它将为说明神经末梢的结构和功能提供一个前所未有的规模和真实感的例子。这些材料将用于匹兹堡大学、马里兰大学和卡内基梅隆大学的课程和项目。这些课程包括本科生和研究生神经科学课程,跨越皮特大学和卡内基梅隆大学的计算生物学博士项目,暑期研讨会,以及基于网络的教程(www.mcell.org)。这些模拟将扩展之前已经被转换为具有教育意义的3D电影的模型,这些电影通常在开放参观、学生参观或课堂教学期间向广泛的观众放映。这项工作还将为匹兹堡超级计算中心为高中推广计划量身定做的教学范例提供素材,特别是由Dittrich博士指导的国家生物医学超级计算资源(NRBSC)的CMIST计划(科学教学计算模块,www.cmis.org)。我们拟议的工作将对K-12教育、本科教学和培训、研究生和研究生培训、社区推广、STEM教学、在代表性不足的少数族裔机构的培训以及该领域的突触功能知识产生广泛影响。梅里尼博士是匹兹堡大学(匹兹堡)神经科学推广委员会的成员,该委员会组织各种社区活动。梅里尼博士的实验室位于艺术与科学学院,因此,这项拟议的研究将通过本科生参与拟议的工作,并根据新的研究见解改变本科课程的内容,为本科教学做出贡献。Dittrich博士还将在他的实验室里培训本科生,让他们参与这项拟议中的工作。他在PIT培训NSF资助的TECBio REU项目的教员,作为该项目的一部分,他通常会在计算项目中指导1-2名学生。此外,Dittrich博士还是宾夕法尼亚州州长科学学院的培训教师,这是一个为宾夕法尼亚州有才华的高中生提供的高强度暑期项目。迪特里奇、梅里尼和布兰皮德博士将把研究生研究员和博士后研究员带到他们的实验室,他们将直接参与拟议的实验,接受所有交叉培训 三个实验室,并接受职业培训。最后,来自新墨西哥北部学院的Ulise Ricoy博士(少数族裔代表不足的教职员工)将在每年夏天访问新墨西哥北部学院,学习新的研究、教学和培训工具,将未被充分代表的少数族裔本科生带回新墨西哥北部学院。这将使这些代表不足的少数族裔学生处于紧张的学术研究环境中,并有助于他们的培训和职业规划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas A Blanpied其他文献

Thomas A Blanpied的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas A Blanpied', 18)}}的其他基金

Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
  • 批准号:
    10434923
  • 财政年份:
    2021
  • 资助金额:
    $ 1.06万
  • 项目类别:
Imaging triheteromeric NMDAR distribution and trafficking
三异体 NMDAR 分布和贩运成像
  • 批准号:
    10313352
  • 财政年份:
    2021
  • 资助金额:
    $ 1.06万
  • 项目类别:
A Lightsheet Microscope for an Established Core Facility
适用于已建立的核心设施的光片显微镜
  • 批准号:
    10172216
  • 财政年份:
    2021
  • 资助金额:
    $ 1.06万
  • 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
  • 批准号:
    9449901
  • 财政年份:
    2016
  • 资助金额:
    $ 1.06万
  • 项目类别:
Multiparametric Biosensor Imaging in Brain Slices
脑切片多参数生物传感器成像
  • 批准号:
    9214054
  • 财政年份:
    2016
  • 资助金额:
    $ 1.06万
  • 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
  • 批准号:
    8837233
  • 财政年份:
    2014
  • 资助金额:
    $ 1.06万
  • 项目类别:
CRCNS: Transmitter Release Site Organization in Plasticity and Disease at the NMJ
CRCNS:NMJ 可塑性和疾病领域的发射机释放站点组织
  • 批准号:
    8902284
  • 财政年份:
    2014
  • 资助金额:
    $ 1.06万
  • 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
  • 批准号:
    9016561
  • 财政年份:
    2013
  • 资助金额:
    $ 1.06万
  • 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
  • 批准号:
    8488671
  • 财政年份:
    2013
  • 资助金额:
    $ 1.06万
  • 项目类别:
Cytoskeletal effects on mitochondrial dynamics through the ER-bound formin INF2
细胞骨架通过内质网结合的 INF2 对线粒体动力学的影响
  • 批准号:
    8692943
  • 财政年份:
    2013
  • 资助金额:
    $ 1.06万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 1.06万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了