MeV: Software for Next Generation Genomic Data Analysis
MeV:下一代基因组数据分析软件
基本信息
- 批准号:8706074
- 负责人:
- 金额:$ 55.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-09-07 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAreaBase SequenceBioconductorBioinformaticsBiologicalBiological AssayBiologyBiomedical ResearchCalendarChIP-seqCodeCommunitiesComputer softwareDNA Microarray ChipDataData AnalysesData SetDevelopmentDiseaseDocumentationEducational workshopEnsureFundingGene Expression Microarray AnalysisGenomicsGoalsHousingHuman Genome ProjectInformation SciencesInstitutesInternationalInvestigationJavaLaboratoriesLearningLinkLinuxLiteratureLungMaintenanceMessenger RNAMeta-AnalysisMethodsMethylationMicroRNAsMicroarray AnalysisProcessProteomicsPublic DomainsPublicationsPublished DatabaseResearchResearch PersonnelResearch Project GrantsResourcesSamplingScienceScientistSeriesSoftware ToolsSolutionsSourceSystemSystems AnalysisSystems BiologyTechnologyThe Cancer Genome AtlasUnited States National Institutes of HealthWorkanalytical methodbasebiological systemsdata miningexperiencefootfunctional genomicsgenome sequencinggraphical user interfaceimprovedmeetingsmetabolomicsnew technologynext generationnext generation sequencingnovelnovel strategiesopen sourcesoftware developmentsoftware systemsstatisticstooltranscriptomicsuser-friendly
项目摘要
DESCRIPTION (provided by applicant): Project Summary: The most transformative aspect of the Human Genome Project was not the sequence of the genome itself, but the technologies that the project has spawned. Genomics, functional genomics, proteomics, metabolomics, systems biology, and other research areas are fundamentally driven by new technologies. The 1995 publication of methods microarray gene expression analysis launched a revolution in biological inquiry in which reliable technologies changed the scale at which we were able to generate data from biological systems and started the transformation of biomedical research from a purely laboratory science to an information science. One of the greatest challenges in this information-rich era of biomedical science has been our ability to effectively collect, manage, and analyze the data that even small laboratories now regularly produce. As early adopters of DNA microarray technology, our group combined laboratory inquiry with software development to address biological questions. By applying state-of-the-art statistical and data mining approaches, we created a series of open-source, easy-to-use software tools that provide access to these methods in a manner that allows even those with limited bioinformatics experience to effectively explore their data and reach testable hypotheses regarding the underlying biology. Of these, MeV, has become one of the most widely used software tools for the analysis DNA microarray data, with more than 22,500 downloads in the past calendar year and more than 1,233 total citations-statistics we believe underestimate the system's overall use. MeV's development and maintenance during the past 10 years has been supported by a series of research grants and other sources. Here we propose to further develop and maintain the codebase, expanding the utility and functionality of the software to meet the challenges of genomic analysis in the coming years. The greatest challenge in keeping MeV and similar tools relevant is the onslaught of data arising from the new sequencing technologies that are poised to replace array-based analysis in many applications. These tools will open up new avenues of investigation by placing genomic analysis on a footing equal with microarrays, providing an opportunity for new approaches to integrative genomic data analysis. In this application, we will describe our plans to expand the utility of MeV by incorporating an ever-increasing number of public domain tools through integration with Cytoscape and Bioconductor, expand the number of novel algorithms developed through our work and development, extend the software and tools to work with Next Generation sequence- based genomic assays, and provide support to the growing community of users of the software and tools that exist. In doing so, we hope to advance understanding of a wide range of diseases, provide resources for interpreting data from such projects as The Cancer Genome Atlas (TCGA) and the Lung Genomics Research Consortium (LGRC), and enable and accelerate research far beyond that of our own.
项目概述:人类基因组计划最具变革性的方面不是基因组本身的序列,而是该项目所产生的技术。基因组学、功能基因组学、蛋白质组学、代谢组学、系统生物学和其他研究领域从根本上说是由新技术驱动的。1995年出版的《微阵列基因表达分析方法》引发了生物学研究的一场革命,可靠的技术改变了我们从生物系统中产生数据的规模,并开始了生物医学研究从纯粹的实验室科学向信息科学的转变。在这个信息丰富的生物医学科学时代,最大的挑战之一是我们有效收集、管理和分析数据的能力,即使是小实验室现在也经常产生这些数据。 作为DNA微阵列技术的早期采用者,我们的团队将实验室调查与软件开发相结合,以解决生物学问题。通过应用最先进的统计和数据挖掘方法,我们创建了一系列开源,易于使用的软件工具,以允许即使是那些生物信息学经验有限的人也能有效地探索他们的数据并达到关于基础生物学的可测试假设的方式提供这些方法。其中,MeV已经成为分析DNA微阵列数据的最广泛使用的软件工具之一,在过去的一年中有超过22,500次下载和超过1,233次总引用-我们认为统计数据低估了该系统的整体使用。在过去10年中,MeV的开发和维护得到了一系列研究赠款和其他来源的支持。在这里,我们建议进一步开发和维护代码库,扩展软件的实用性和功能,以应对未来几年基因组分析的挑战。保持MeV和类似工具相关性的最大挑战是新测序技术产生的数据冲击,这些技术有望在许多应用中取代基于阵列的分析。这些工具将开辟新的研究途径,将基因组分析置于与微阵列平等的基础上,为整合基因组数据分析的新方法提供机会。在本申请中,我们将描述我们的计划,通过与Cytoscape和Bioconductor集成来合并越来越多的公共领域工具,扩展MeV的效用,扩展通过我们的工作和开发的新颖算法的数量,扩展软件和工具以与下一代基于序列的基因组测定一起工作,并为现有软件和工具的日益增长的用户社区提供支持。在这样做的过程中,我们希望促进对各种疾病的理解,为解释癌症基因组图谱(TCGA)和肺基因组学研究联盟(LGRC)等项目的数据提供资源,并实现和加速远远超出我们自己的研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Quackenbush其他文献
John Quackenbush的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Quackenbush', 18)}}的其他基金
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10676979 - 财政年份:2019
- 资助金额:
$ 55.73万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10251317 - 财政年份:2019
- 资助金额:
$ 55.73万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10454298 - 财政年份:2019
- 资助金额:
$ 55.73万 - 项目类别:
WebMeV: A Robust Platform for Intuitive Genomic Data Analysis
WebMeV:用于直观基因组数据分析的强大平台
- 批准号:
10001456 - 财政年份:2019
- 资助金额:
$ 55.73万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
9762881 - 财政年份:2018
- 资助金额:
$ 55.73万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
10462799 - 财政年份:2018
- 资助金额:
$ 55.73万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
10665644 - 财政年份:2018
- 资助金额:
$ 55.73万 - 项目类别:
Unraveling the Complexities of Risk and Mechanism in Cancer
揭示癌症风险和机制的复杂性
- 批准号:
10246935 - 财政年份:2018
- 资助金额:
$ 55.73万 - 项目类别:
Statistical and Quantitative Training in Big Data Health Science
大数据健康科学统计与定量培训
- 批准号:
9115368 - 财政年份:2016
- 资助金额:
$ 55.73万 - 项目类别:
Statistical and Quantitative Training in Big Data Health Science
大数据健康科学统计与定量培训
- 批准号:
9248431 - 财政年份:2016
- 资助金额:
$ 55.73万 - 项目类别:
相似海外基金
Approximate algorithms and architectures for area efficient system design
区域高效系统设计的近似算法和架构
- 批准号:
LP170100311 - 财政年份:2018
- 资助金额:
$ 55.73万 - 项目类别:
Linkage Projects
AMPS: Rank Minimization Algorithms for Wide-Area Phasor Measurement Data Processing
AMPS:用于广域相量测量数据处理的秩最小化算法
- 批准号:
1736326 - 财政年份:2017
- 资助金额:
$ 55.73万 - 项目类别:
Standard Grant
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2017
- 资助金额:
$ 55.73万 - 项目类别:
Discovery Grants Program - Individual
Rigorous simulation of speckle fields caused by large area rough surfaces using fast algorithms based on higher order boundary element methods
使用基于高阶边界元方法的快速算法对大面积粗糙表面引起的散斑场进行严格模拟
- 批准号:
375876714 - 财政年份:2017
- 资助金额:
$ 55.73万 - 项目类别:
Research Grants
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2016
- 资助金额:
$ 55.73万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2015
- 资助金额:
$ 55.73万 - 项目类别:
Discovery Grants Program - Individual
Low Power, Area Efficient, High Speed Algorithms and Architectures for Computer Arithmetic, Pattern Recognition and Cryptosystems
用于计算机算术、模式识别和密码系统的低功耗、面积高效、高速算法和架构
- 批准号:
1686-2013 - 财政年份:2014
- 资助金额:
$ 55.73万 - 项目类别:
Discovery Grants Program - Individual
AREA: Optimizing gene expression with mRNA free energy modeling and algorithms
区域:利用 mRNA 自由能建模和算法优化基因表达
- 批准号:
8689532 - 财政年份:2014
- 资助金额:
$ 55.73万 - 项目类别:
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Monitoring of Power Systems
CPS:协同:协作研究:用于电力系统广域监控的分布式异步算法和软件系统
- 批准号:
1329780 - 财政年份:2013
- 资助金额:
$ 55.73万 - 项目类别:
Standard Grant
CPS: Synergy: Collaborative Research: Distributed Asynchronous Algorithms and Software Systems for Wide-Area Mentoring of Power Systems
CPS:协同:协作研究:用于电力系统广域指导的分布式异步算法和软件系统
- 批准号:
1329745 - 财政年份:2013
- 资助金额:
$ 55.73万 - 项目类别:
Standard Grant