Quantitative MRI of Glioblastoma Response
胶质母细胞瘤反应的定量 MRI
基本信息
- 批准号:8659191
- 负责人:
- 金额:$ 57.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-05-06 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:Adverse effectsAlgorithmsAmerican College of Radiology Imaging NetworkBiological MarkersBloodBlood VesselsClinicalClinical TrialsCore-Binding FactorDataDecision MakingDiffusionExtravasationGadoliniumGlioblastomaHumanImageInstructionMagnetic Resonance ImagingMalignant neoplasm of brainMeasurementMethodsMulticenter StudiesNational Cancer InstituteOncologistPatientsPerformancePermeabilityPredispositionPrincipal InvestigatorProcessProgression-Free SurvivalsPropertyPublishingResearchRetrospective StudiesScientistTechniquesThe SunWorkbasebevacizumabcancer therapyclinical decision-makingferumoxytolgadolinium oxideimaging modalityimprovedindexingoutcome forecastprognosticprospectiveresponsesimulationtooltumor
项目摘要
DESCRIPTION (provided by applicant): Assessment of anti-angiogenic therapies for the most severe form of brain cancer, glioblastoma, is extremely timely given the recent approval of bevacizumab yet the moderate response rate and the challenging side effects of these therapies. Clinical decision-making tools are badly needed; fortunately, our recently published data suggest that measurement of microvascular properties of the tumor using MRI and gadolinium-based approaches could be very useful, as with proper quantitation these methods appear to be capable of serving as an effective prognostic imaging biomarker, and may be beneficially combined with blood biomarkers. We propose to join the NCI's Quantitative Imaging Network (QIN) and develop improved analysis methods for dynamic contrast enhanced MRI and dynamic susceptibility MRI that will improve quantification and decrease variability. We propose to develop techniques that will be applicable in the multicenter setting through a bottom-up approach of simulations, phantom studies, retrospective analysis, and prospective analysis in patients undergoing treatment with anti-angiogenic therapies. We anticipate that our proposed approach, in particular through working in close harmony with the QIN, will improve the reliability of advanced microvascular MRI methods as potential imaging biomarkers, and pave the way for a clinically useful decision-making tool. RELEVANCE (See instructions): Advanced MRI methods may improve our ability to provide an accurate prognosis and potentially guide treatment choices for glioblastoma patients. Our proposed research will help establish a common, standardized approach to acquisition and analysis of two forms of vascular MRI that have shown excellent promise. We will do this by careful reduction of variability and by close participation in the National Cancer Institute's Quantitative Imaging Network. These efforts will enable these advanced techniques to become more widely available and more appropriately establish their benefit to patients.
描述(申请人提供):考虑到贝伐单抗最近获得批准,对最严重的脑癌--胶质母细胞瘤的抗血管生成疗法的评估是非常及时的,但这些疗法的反应率中等,副作用具有挑战性。临床决策工具是迫切需要的;幸运的是,我们最近发表的数据表明,使用MRI和基于Gd的方法测量肿瘤的微血管属性可能非常有用,因为如果进行适当的定量,这些方法似乎能够作为有效的预后成像生物标记物,并可能与血液生物标记物相结合。我们建议加入NCI的定量成像网络(QIN),并为动态对比增强MRI和动态敏感性MRI开发改进的分析方法,以提高量化和减少变异性。我们建议通过对接受抗血管生成治疗的患者进行自下而上的模拟、模体研究、回顾分析和前瞻性分析,开发适用于多中心设置的技术。我们预计,我们提出的方法,特别是通过与QIN密切合作,将提高先进的微血管MRI方法作为潜在成像生物标志物的可靠性,并为临床有用的决策工具铺平道路。相关性(参见说明书):先进的MRI方法可能会提高我们提供准确预后的能力,并有可能指导胶质母细胞瘤患者的治疗选择。我们提出的研究将有助于建立一种通用的、标准化的方法来获取和分析两种形式的血管MRI,这两种形式已经显示出极好的前景。我们将通过仔细减少变异性和密切参与国家癌症研究所的定量成像网络来做到这一点。这些努力将使这些先进技术得到更广泛的应用,并更恰当地确定它们对患者的好处。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jayashree Kalpathy-Cramer其他文献
Jayashree Kalpathy-Cramer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jayashree Kalpathy-Cramer', 18)}}的其他基金
Robust AI to develop risk models in retinopathy of prematurity using deep learning
强大的人工智能利用深度学习开发早产儿视网膜病变的风险模型
- 批准号:
10254429 - 财政年份:2020
- 资助金额:
$ 57.52万 - 项目类别:
Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
- 批准号:
10228687 - 财政年份:2019
- 资助金额:
$ 57.52万 - 项目类别:
Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
- 批准号:
10018827 - 财政年份:2019
- 资助金额:
$ 57.52万 - 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
- 批准号:
9564836 - 财政年份:2014
- 资助金额:
$ 57.52万 - 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
- 批准号:
8787268 - 财政年份:2014
- 资助金额:
$ 57.52万 - 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
- 批准号:
9334737 - 财政年份:2014
- 资助金额:
$ 57.52万 - 项目类别:
Clinical Image Retrieval: User needs assessment, toolbox development & evaluation
临床图像检索:用户需求评估、工具箱开发
- 批准号:
7739714 - 财政年份:2009
- 资助金额:
$ 57.52万 - 项目类别:
Clinical Image Retrieval: User needs assessment toolbox development & evaluation
临床图像检索:用户需求评估工具箱开发
- 批准号:
8299311 - 财政年份:2009
- 资助金额:
$ 57.52万 - 项目类别:
Clinical Image Retrieval: User needs assessment toolbox development & evaluation
临床图像检索:用户需求评估工具箱开发
- 批准号:
8323502 - 财政年份:2009
- 资助金额:
$ 57.52万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 57.52万 - 项目类别:
Research Grant














{{item.name}}会员




