Clinical Image Retrieval: User needs assessment toolbox development & evaluation

临床图像检索:用户需求评估工具箱开发

基本信息

项目摘要

DESCRIPTION (provided by applicant): Advances in digital imaging technologies have led to a substantial growth in the number of digital images being created and stored in hospitals, medical systems, and on the Internet in recent years. Effective medical image retrieval systems can play an important role in teaching, research, diagnosis and treatment. Images were historically retrieved using text-based methods. The quality of annotations associated with images can reduce the effectiveness of text-based image retrieval. Despite recent advances, purely content- based image retrieval techniques lag significantly behind their textual counterparts in their ability to capture the semantic essence of the user's query. Preliminary research suggests that a more promising approach is to adaptively combine these complementary techniques to suit the user and their information needs. However, for these approaches to succeed, the researcher needs to enhance her computational skills in addition to acquiring a comprehensive understanding of the relevant clinical domain. This Pathway to Independence (K99/R00) grant application describes a training and career development plan that will allow the candidate, an NLM postdoctoral fellow in Medical Informatics at Oregon Health & Science University to achieve these objectives. The training component will be carried out under the mentorship of Dr. W. Hersh with Dr. Gorman (user studies). Dr. Fuss (radiation medicine) and Dr. Erdogmus (machine learning) providing additional mentoring in their areas of expertise. The long-term goal of this Pathway to Independence (K99/R00) project is to improve visual information retrieval by better understanding user needs and proposing adaptive methodologies for multimodal image retrieval that will close the semantic gap. During the award period, activities will be focused on the following specific aims: (1) Understand the image retrieval needs of novice and expert users in radiation oncology and develop gold standards for evaluation; (2) Develop algorithms for semantic, multimodal image retrieval; (3) Perform user based evaluation of adaptive image retrieval in radiation oncology; (4) Extend the techniques developed to create a multimodal image retrieval system in pathology
描述(由申请人提供): 近年来,数字成像技术的进步已经导致在医院、医疗系统和互联网上创建和存储的数字图像的数量大幅增长。有效的医学图像检索系统可以在教学、科研、诊断和治疗中发挥重要作用。历史上使用基于文本的方法检索图像。与图像相关的注释的质量会降低基于文本的图像检索的有效性。尽管最近的进展,纯粹的基于内容的图像检索技术明显落后于他们的文本同行在他们的能力,以捕捉用户的查询的语义本质。初步的研究表明,一个更有前途的方法是自适应联合收割机这些互补的技术,以适应用户和他们的信息需求。然而,为了使这些方法取得成功,研究人员除了对相关临床领域有全面的了解外,还需要提高她的计算技能。这条通往独立的道路(K99/R 00)资助申请描述了一个培训和职业发展计划,该计划将允许候选人,俄勒冈州健康与科学大学医学信息学的NLM博士后研究员实现这些目标。培训部分将在W. Hersh和Gorman博士(用户研究)。Fuss博士(放射医学)和Erdogmus博士(机器学习)在他们的专业领域提供额外的指导。 这个独立之路(K99/R 00)项目的长期目标是通过更好地理解用户需求和提出适应性方法来改善视觉信息检索,以缩小语义差距。在奖励期间,活动将集中在以下具体目标:(1)了解放射肿瘤学中新手和专家用户的图像检索需求,并制定评估的金标准;(2)开发语义、多模态图像检索算法;(3)执行基于用户的放射肿瘤学自适应图像检索评估;(4)扩展已开发的技术,以创建病理学多模态图像检索系统

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jayashree Kalpathy-Cramer其他文献

Jayashree Kalpathy-Cramer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jayashree Kalpathy-Cramer', 18)}}的其他基金

Robust AI to develop risk models in retinopathy of prematurity using deep learning
强大的人工智能利用深度学习开发早产儿视网膜病变的风险模型
  • 批准号:
    10254429
  • 财政年份:
    2020
  • 资助金额:
    $ 23.45万
  • 项目类别:
Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
  • 批准号:
    10228687
  • 财政年份:
    2019
  • 资助金额:
    $ 23.45万
  • 项目类别:
Distributed Learning of Deep Learning Models for Cancer Research
癌症研究深度学习模型的分布式学习
  • 批准号:
    10018827
  • 财政年份:
    2019
  • 资助金额:
    $ 23.45万
  • 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
  • 批准号:
    9564836
  • 财政年份:
    2014
  • 资助金额:
    $ 23.45万
  • 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
  • 批准号:
    8787268
  • 财政年份:
    2014
  • 资助金额:
    $ 23.45万
  • 项目类别:
Informatics Tools for Optimized Imaging Biomarkers for Cancer Research&Discovery
用于优化癌症研究成像生物标志物的信息学工具
  • 批准号:
    9334737
  • 财政年份:
    2014
  • 资助金额:
    $ 23.45万
  • 项目类别:
Quantitative MRI of Glioblastoma Response
胶质母细胞瘤反应的定量 MRI
  • 批准号:
    8659191
  • 财政年份:
    2011
  • 资助金额:
    $ 23.45万
  • 项目类别:
Clinical Image Retrieval: User needs assessment, toolbox development & evaluation
临床图像检索:用户需求评估、工具箱开发
  • 批准号:
    7739714
  • 财政年份:
    2009
  • 资助金额:
    $ 23.45万
  • 项目类别:
Clinical Image Retrieval: User needs assessment toolbox development & evaluation
临床图像检索:用户需求评估工具箱开发
  • 批准号:
    8299311
  • 财政年份:
    2009
  • 资助金额:
    $ 23.45万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 23.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了